Use of Single Crystal Diamond for the Fast Beam Conditions Monitor and the Pixel Luminosity Tracker for CMS at the LHC

Richard Hall-Wilton (CERN/Wisconsin)

On Behalf of CMS-BRM and CMS-PLT Groups

Institutes presently involved: Auckland, Canterbury, CERN, DESY-HH, DESY-Zeuthen, Fermilab, Karlsruhe, Princeton, Rutgers, Tennessee, Vanderbilt, Vienna, Uni Hamburg

CARAT09 Worskhop 14th December 2009

Primarily based upon these 2 papers:

Fast Beam Conditions Monitor BCM1F for the CMS Experiment

A. Bell^{b,e}, E. Castro^c, R. Hall-Wilton^{b,g}, W. Lange^c, W. Lohmann^{c,a}, A. Macpherson^b, M. Ohlerich^{c,a}, N. Rodriguez^f, V. Ryjov^b, R.S. Schmidt^{c,a}, R.L. Stone^d

^aBrandenburgische Technische Universität, 03046 Cottbus, Germany
 ^bCERN, 1211 Geneva 23, Switzerland
 ^cDESY, 15738 Zeuthen, Germany
 ^dRutgers University, 08854 Piscataway, NJ, USA
 ^eUniversité de Genève, 1211 Geneva, Switzerland
 ^fCanterbury University, 8041 Christchurch, New Zealand
 ^gUniversity of Wisconsin, Madison, WI 53706-1481, USA

Abstract

The CMS Beam Conditions and Radiation Monitoring System, BRM, will support beam tuning, protect the CMS detector from adverse beam conditions, and measure the accumulated dose close to or inside all sub-detectors. It is composed of di erent sub-systems measuring either the particle flux near the beam pipe with time resolution between nano- and microseconds or the integrated dose over longer time intervals. This paper presents the Fast Beam Conditions Monitor, BCM1F, which is designed for fast flux monitoring measuring both beam halo and collision products. BCM1F is located inside the CMS pixel detector volume close to the beam-pipe. It uses sCVD diamond sensors and radiation hard front-end electronics, along with an analog optical readout of the signals. The commissioning of the system and its successful operation during the first beams of the LHC are described.

Key words: LHC, CMS, beam conditions, sCVD diamonds, radiation hard sensors

(Submitted NIM A)

Results from a Beam Test of a Prototype PLT Diamond Pixel Telescope

R. Hall-Wilton, R. Loos, V. Ryjov

CERN, Geneva, Switzerland

M. Pernicka, S. Schmied, H. Steninger

Institute of High Energy Physics, Vienna, Austria

V. Halyo, B. Harrop, A. Hunt, D. Marlow, B. Sands, D.Stickland

Princeton University, Princeton, NJ, USA

O. Atramentov, E. Bartz, J. Doroshenko, Y. Gershtein, D. Hits, S. Schnetzer, R. Stone

Rutgers University, Piscataway, NJ, USA

P. Butler, S. Lansley, N. Rodrigues

University of Canterbury, Christchurch, New Zealand

W. Bugg, M. Hollingsworth, S. Spanier

University of Tennessee, Knoxville, TN, USA

W. Johns

Vanderbilt University, Nashville, TN, USA

Abstract

We describe the results from a beam test of a telescope consisting of three planes of single-crystal, diamond pixel detectors. This telescope is a prototype for a proposed small-angle luminosity monitor, the Pixel Luminosity Telescope (PLT), for CMS. We recorded the pixel addresses and pulse heights of all pixels over threshold as well as the fast-or signals from all three telescope planes. We present results on the telescope performance including occupancies, pulse heights, fast-or efficiencies and particle tracking. These results show that the PLT design concept is sound and indicate that the project is ready to proceed with the next phase of carrying out a complete system test, including full optical readout.

(about to be submitted)

Monday, December 14, 2009

... and the reality ...

BRM Subsystem Hardware Summary

that are relative flux monitors

Increased time resolution

Emphasis on detectors

Subsystem	Location	Sampling time	Function	Readout + Interface	
Passives TLD + Alanine	In CMS and UXC	Long term	Monitoring		
RADMON	18 monitors around CMS	1s	Monitoring	Standard LHC	
BCM2 Diamonds	At rear of HF z=±14.4m	40 us	Protection	CMS + Standard LHC	
BCM1L Diamonds	Pixel Volume z=±1.8m	Sub orbit ~ 5us	Protection	CMS + Standard LHC	
BSC Scintillator	Front of HF z=±10.9,14.4 m	(sub-)Bunch by bunch	Monitoring	CMS Standalone	
BCM1F Diamonds	Pixel volume z=±1.8m	(sub-)Bunch by bunch	Monitoring + protection	CMS Standalone	
BPTX Beam Pickup	175m upstream from IP5	200ps	Monitoring	CMS Standalone	

Systems are independent of CMS DAQ, and on LHC UPS power

Why do we need beam monitoring?

Slide from Jorg Wenninger Stored Energy

Large damage potential from uncontrolled beams means that comprehensive protection system is needed

BCM Systems perform this role for the experiments

Intensity / p+

1.2×10¹²

2.4×10¹²

4.8×1012

7.2×1012

C

C

D

B

Α

D

Damage Potential of High Energy Beams

- Controlled experiment with 450 GeV beam shot into a target (over 5 μ s) to benchmark simulations:
- Melting point of <u>Copper</u> is reached for an impact of ~
 2.5×10¹² p, damage at ~ 5×10¹² p.
 Experiments-Machine V

Monday, December 14, 2009

Expectation of charged particle flux at nominal LHC luminosity

Location of beam conditions monitors and inner layer pixel detectors ca. 4-5cm radius

At nominal luminosities, fluxes of charged hadrons of 3.10⁸ cm⁻²s⁻¹ expected

Diamonds in CMS

Diamond in HEP Experiments

(Plot Courtesy of H. Kagan/RD42)

Fast Beam Conditions Monitor

Fast Beam Conditions Monitor

- Purpose: Give bunch-by-bunch (and sub-bunch) MIP-sensitive measurements of losses inside pixel detector volume
- Measure both beam halo losses and collision losses
- Location is very restricted and crowded
 - No cooling or slow control possible
 - Test pulse shares HV lines
 - Needs to be insensitive to environmental conditions
 - Needs to have an optical readout to backend
- sCVD diamond (from DD) used
 - 5x5x0.5mm sensor
 - Choice due to signal size
 - Radiation hardness "sufficient" for LHC (...maybe not be SLHC (see Wim's talk) ..)

BCM1F components in detail - PREAMP + OPTOBOARD

JK16 (CERN) [IEEE TNS 52-2005 2713]:

- 0,25 µm radhard CMOS process
- Transimpedance design
- Charge sensitive preamp + shaper (20 ns peaking time)
- 4 pF input capacitance (open loop)
- $10 \text{ mV} / \text{fC} \Rightarrow \sim 60 \text{ mV} / \text{MIP}$ for the sCVD sensor
- $ENC \sim 500 e^{-} + 40 e^{-} / pF$ •
- Sensor glued onto PCB and (wire)bonded directly to the preamp
- Leakage currents of < 1 nA achieved
- Supply cable soldered directly to the PCB
- Piggy back connection to the analog optical hybrid (AOH) board
- Optical transmitter supplied via preamp board

BCM1F components in detail - SIGNAL TRANSMISSION

Analog optical hybrid:

- Adjustment of laser pre-bias current
- Optimal setting for modulation of signal
 ⇒ Attention paid to possible degradation

...laser, pigtail, patch panel, ribbon...

Optical receiver:

• Adjustment of offset compensation

Final Detectors

70,00

60,00

50,00 40,00

40,00 30,00 30,00 20,00

10,00

0,00

0

50

100

150

200

Biasing Voltage [V]

250

300

Signal Yield vs High Voltage (Module 4-6)

- Good separation S/N
- Signal saturates <100V
 - <0.2V/um

.

400

450

350

Mechanics

Shown is 4 detectors mounted on I "end"

Total of 8 detectors

BCMIF Installation

Monday, December 14, 2009

Detector performance with 2008 beam

Beam in 2009

- In good conditions, a few MIPs are seen
- Timing information visible
- With very high losses, see saturation
- (>40 particles/bunch crossing)
- Analysis ongoing
- Clearly a useful tool
- See Steffen's talk

Pixel Luminosity Telescope

A dedicated "stand-alone" luminosity monitor for CMS

The Pixel Luminosity Telescope (PLT)

- Independent of CMS (self-triggered) • Relative bunch-by-bunch measurements Precision at 1% level (stat, syst) 1.5cm 4mm Self monitoring/calibrating \Rightarrow 3 layer particle tracking 4mm **Beam Halo** CIII 8 telescopes per "end" 175 cm Single-crystal diamond pixel Count 3-fold coincidences every • Fast pixel OR readout (3-layer coincidence) bunch crossing (40 MHz) • Full readout (1-10 kHz)
 - Count "tracks" from the IP
 - Proportional to luminosity

Mechanics already exists

slides on rails inside of the pixel service cylinder

Fits in BCMI Carriage

Single-Crystal Diamond Detector (sCVD)

- Radiation hard (survives > 2 x 10¹⁵ p/cm²)
- No need for cooling
- Full charge collection at E-field < 0.2V/um
- Fast signal collection (~1ns from 500 um)
- Pulse height well separated from pedestal

Readout

- CMS Pixel chip (PSI46v2) bump-bonded to sCVD
- Fast cluster counting in double-columns built in
- Individual pixel thresholds adjustable
- Individual pixels can be masked
- Self-triggered by fast pixel OR
- Full analog readout of
 - Hit address
 - Charge deposit
- Standard pixel readout (FEC, FED [ADC])
- Fast-Or Readout (40 MHz)
 - Bunch-by-bunch luminosity
 - Population of abort gap
 - Simulation: 1.6 tracks/BC at nominal luminosity
- Full pixel readout (1-10 kHz)
 - bunch integrated luminosity
 - IP centroid
 - Beam Halo Measurement

8 mm

Bump bonded at Princeton micro-fab lab

Detector Fabrication

patterned diamond

indium bumps

bumped ROC

bumped detector

Bump Yield

Beam Test

- 1 full PLT telescope was successfully tested at CERN SPS
- 150 GeV/c π+
- 2 days of beam time

Small (6x6 mm) Scintillators (used as triggers)

7

Charge Deposit

- Calibrated using charge injection feature of PSI42
- Require single cluster in all three planes
- Sum over cluster
- Most probable charge deposit: ~18,000 electrons (Si: ~28,000)

Pixel Yields

Percentage of pixels with no hits:

Plane 1: 1.8% Plane 2: 2.2% Plane 3: 0.1%

Fiducial area: masked border rows and columns and columns in shadow of entrance counter

Alignment

- Successfully reconstructed tracks
 - Hit position defined as the "center of charge" (charge sharing)
- Define residual: $x_2 (x_3 x_1)/2$
- Alignment
 - X offset: 25 ± 5 um
 - Y offset: 144 ± 3 um
- Rotation: 0.6 degrees
 - · 40 um over 4mm
- Even with only a few tracks, a successful alignment was achieved
 - X alignment: 57 tracks
 - Y alignment: 140 tracks

Pulse Heights

- Require single cluster in all three planes
- For Plane c, require hit in regions of Planes a and b such that track is certain to pass through fiducial region of Plane c
- Plot pulse height summed over cluster

Plane 1: 16,000 e^- Plane 2: 18,500 e^- Plane 3: 18,500 e^-

Fast-OR

Calibration procedure defined for production Calibration

Summary

- Outline of 2 MIP sensitive detectors using SCVD diamond for CMS shown
- Fast Beam Conditions Monitor
 - Built, installed and working
 - Meets the required specifications
 - Already proving useful in helping diagnosing beam conditions in the CMS experiment during this LHC run
 - Will prove to be an invaluable diagnostic tool
- Pixel Luminosity Telescope
 - Testbeam results show that design meets requirements
 - Demonstration of a diamond pixel tracker
 - Approved as a CMS project construction started of 16 (+4) telescopes
 - Installation into CMS early 2011