

BLM test results at PS and PSB

Jaime Gil Flores [*BE/ABP*]

In collaboration: S. Gilardoni, S. Aumon [*BE/ABP*] R. Steerenberg, B. Mikulec, G. Metral, K. Hanke [*BE/OP*] E. Effinger [*BE/BI*]

Motivations

- *Renew* old BLM system on PS and PSB:
 - > NO spare available for ACEM detectors
 - ACEM has to be recalibrated every year:
 Dose taken during the intervention should be minimized
- Test for future BLM system of LINAC 4

<u>Tests with different BLM types</u>

ACEM (current)

LIC

LHC BLM

SEM

Courtesy of U. Wienands (SLAC)

ACEM:

- Glass vacuum tube (40 mm diam. & 90 mm long)
- 10 Stage Electron-Multiplier
- Multiplication factor up to 10⁶
- Pros:
 - Fast response
 - High sensitivity
- Cons:
 - Calibration
 - Aging due to the radiation
 - Reduced size (small solid angle)
 - Saturation for large losses

LHC BLM:

- Ionization chamber (N₂)
- Parallel AI electrode plates
- 9 cm diam. & 50 cm long
- Pros:
 - Large volume (1.5 l)
 - Fully tested in LHC
- Cons:
 - Slow time response
 - Sensitivity to small instantaneous (~ few μs) losses
 - Large volume (PSB)
 - Saturated with very large losses

LHC BLM calibration curve

Lit: M. Stockner thesis

"http://cern.ch/blm/Talks_and_papers/stockner/thesis_mstockner_cern_11_2007.pdf"

LIC:

- Same operation as LHC BLM
- Different chamber pressure (0.01 bar.)
- 9 cm diam. & 18 cm long
- Pros:
 - Time response faster than LHC BLM (not fully tested)
- Cons:
 - Sensitivity to small instantaneous losses
 - Reduced size

SEM:

- Based on *secondary electron* emission
- Pros:
 - Very high loss rate
 - High linearity
 - Fast response
- Cons:
 - Low sensitivity
 - (10.000 times less than LHC BLMs)
 - Reduced size

PEP-II detector:

- 1 cm³ Fuse-silica Cherenkov counter
- Small (fast) Hamamatsu PMT
- 5 mm lead Shielding (1 kg)
- 40 mm diam. & 150 mm long
- Tested in UA9 (SPS experiment)
- Pros:
 - Fast response
- Cons:
 - No data available about aging due to radiation from protons
 - linearity of response (to be tested)

<u>Measurement conditions</u>

Oscilloscope (1 GHz):
 Terminated 50Ω

- Direct signal from detectors via spare OASIS cable.
- Two sets of data:
 - > 19/10/2010 compare SEM, PEP-II BLM & ACEM
 - > 12/11/2010 compare LIC, PEP-II BLM & ACEM

Detector installation

Beam Types

TOF:

- 1 Bunch
- 234 ns length
- 850 10¹⁰ p/bunch
- Toward the *nTOF* facility

CNGS:

- 8 Bunches
- 173 ns length
- 350 10¹⁰ p/bunch
- To Gran Sasso

BLM Results

19th October 2010 [SEM]

BLM Results LHC / ACEM CNGS

S. Aumon MSWG Meeting 13/08/2010

Transformers

Losses between BT transformer & PS ring transformer

BLM Results

BLM Results

Conclusions

See Simone's slides