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Abstract
The possibility to use a gas cell filled by noble gas (He or Ar) for thermalizing, storing
and transporting radioactive ions is explored by studying experimentally ion – electron
recombination of stable Ni, resonantly ionized by laser light.  Combined with a literature
study on ionization chambers, especially developed for high-intensity applications,
conclusions are drawn on the maximum intensity of the incoming ion beam.  A practical
limit is encountered when the space-charge induced voltage fully counteract the applied
voltage on the electrodes collecting the electrons.
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1. Introduction

Chambers, filled with noble gasses such as helium and argon, are good devices to store
ions of most of the chemical elements.  The high ionization potential of the noble gas
atoms prevents charge-exchange processes between the ions of interest and the buffer gas
atoms resulting in long ion survival times.  It is also possible to use high-density (around
normal pressures) gasses for stopping energetic particles.  Combining these two aspects
does make gas cells an attractive approach to slow down radioactive ions after their
production and transport them out of the gas cell to an on-line mass separator.
This transport can be through a gas flow inside the gas cell and a supersonic expansion at
the exit hole of the cell.  Depending on the dimensions of the cell and on the conductance
of the exit hole, transport times will ranges from ms to several seconds.  Such gas cells are
presently in use at different accelerator laboratories and the approach is called the
IGISOL-technique (Ion Guide Isotope Separation On Line). The dimensions of the cell are
rather limited, as is the obtained efficiency due to the neutralization of the primary ions.
For a recent overview see [1].  Re-ionization of the atoms of interest can be done
resonantly by the use of laser light as done with the Leuven laser ion source (see [2] and
references therein).
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A second and faster way to transport the ions is by using electrical fields inside the gas
cell.  This set-up will be called the drift gas cell.  This type of gas cell is quite similar to
ionization chambers used for detecting ionizing radiation. The total charge liberated by
the radiation entering the gas cell (typical at 1 atmosphere and all kinds of gasses: He, Ar,
H2, N2, air) is collected on two electrodes (see figure 1).  In order to have a good intensity
and deposited-energy determination, no recombination of the positive and negative
charges should occur.
Some methods developed to characterize and minimize recombination losses in gas cells
will be reviewed here.  Use will be made from recent experiments with the Leuven laser
ion source and from the literature published on ionization chambers.  Then, the primary
conditions will be described to adapt a possible drift gas cell for the production of intense
beams of radioactive ions.  Where possible, the obtained results will be confronted with
the experimental observations from ionization chambers, especially developed for high-
intensity applications, and from the laser ion source.  Finally, a number of conclusions
will be drawn on the applicability range of the drift gas cell.

2. Recombination losses

In ionization chambers one is interested in collecting all charges created by the ionizing
radiation.  In the application for slowing down and transporting radioactive ions one is in
fact only interested in the particular radioactive ion.  All other ion – electron pairs, created
in the slowing down process, are rather a nuisance but it looks difficult to discriminate the
two kind of ions and therefore one has also to take into account all created charges.
Different chemical processes do take place in a gas cell influencing the fate of ions and
atoms.  For instance fast chemistry can take place between trace ions or atoms with
impurities in the buffer gas or with the buffer gas atoms themselves (for a recent
discussion see [2]).  The most important loss factor of ions in the gas cell will be
neutralization and the most important neutralization mechanism is the three-body ion-
electron recombination.  Taking the case where ion-electron (X+ - e- ) pairs are created in
a gas cell filled with helium, the rate at which the three-body ion-electron recombination,
X+ + e- + He => X* + He, is proceeding depends on α, the recombination coefficient
(cm3.s-1) and on Q, the number of ion/e pairs created (cm-3.s-1).  We will call Q the
ionizing rate.  As most of the ions will be buffer gas ions, the recombination process will
be dominated by the recombination coefficient of the buffer gas itself.  If there is a
constant ionizing rate Q, such as when a beam of ionizing radiation, having a constant
intensity, passes through the gas cell, the time in which the three-body ion-electron
recombination reaches the equilibrium ion-electron density can be determined as follows:

αQ
t 1=  (s) {1}

In saturation, the density n is then:
ααααQn =  (cm-3) {2}

For a helium ion in 0.5 atmosphere helium, the recombination coefficient α amounts to
1.67 10-7 cm3.s-1 [3].  Taking an ionizing rate of 1010 ion-electron pairs/cm3s leads in



helium to a saturation time of 24 ms.  It is thus clear that the ionizing rate Q, the
recombination coefficient α and the residence time of the ions and electrons in the gas
will define recombination losses.
When using ionization chambers for Minimum Ionizing Particles (for a discussion see [4]
and [5]), the number of ion-e pairs created per cm in 1 atmosphere He is 7.8.  The mean
ionization energy Wi to create one ion-electron pair was taken to be 41 eV (see table 1).
In argon, due to the higher stopping efficiency and the lower mean ionization energy (26
eV), this amounts to 94 pairs per cm.  The energy of the emitted electron varies between
some eV up to several keV (called δ electrons): 80 % are low-energetic (< 45 eV) against
0.2 % high-energetic (> 3 keV).  This means that some of these electrons can create more
ion – electron pairs and therefore the multiplicity of ion-e pairs per interaction lies higher
than 1 [5].  Furthermore these high-energy electrons will result through their energy loss
in a much bigger pulse height, determining mainly the observed track diameter ( typically
100 µm).  Taking this diameter, which is for most of the ion-electron pairs an upper limit,
the ion density in the track is typically 105 ion-e pairs/cm3 for He (106 ion-e pairs/cm3 for
Ar).  In contrast, the density of tracks of highly-ionizing particles is much higher.  Highly-
ionizing particles, discussed in the context of ionization chambers, are typically alpha
particles and fission fragments.  The beams of radioactive ions, envisaged to be stopped in
a drift gas cell, range from He up to the superheavy elements.
In order to study neutralization in a gas cell, a controlled amount of 58Ni ions, delivered
by the CYCLONE cyclotron of Louvain-la-Neuve, was injected in the Leuven laser ion
source [2].  Figure 2 gives a schematic overview of the experimental set-up.  Starting at
185 MeV and by proper energy degrading, a 30 MeV 58Ni beam enters the gas cell and is
stopped in the middle when 0.5 atmosphere Ar is used.  The beam spot has a diameter of
about 6 mm and the longitudinal straggling spreads the stopped ions over 5 mm in the y
direction (see figure 2).  In figure 3, a number of time profiles of mass-separated beams
after a 50 ms cyclotron pulse are given.  Ions of 40Ar are mainly flowing out of the gas
cell during the beam impact indicating that the Ar buffer gas near the exit hole is directly
ionized, probably by high-energetic photons and/or electrons.  Ions of 58Ni, surviving the
thermalization and transport in the gas cell, reach their maximum around 0.5 s after the
impact (see 58Ni off-resonance in fig. 3).  This is in accordance with gas flow calculations
on the used gas cell. If resonant laser light is used to re-ionize the neutralized 58Ni beam
particles, the 58Ni signal has the same time profile but is some two orders of magnitude
more intense (see 58Ni on-resonance in fig. 3).  The saw-tooth pattern is due to the 20 Hz
laser pulse repetition rate and the fact that new neutral Ni atoms do enter the laser
interaction zone (the cross section of the laser beam is ~ 0.12 cm2).  The time profiles in
figure 3 were taken with a Ni beam of 1.5 pnA (particle nano-Ampere).  In figure 4, the
mass-separated 58Ni current is given as a function of the 58Ni cyclotron beam current.  A
DC beam is applied here.  The percentage of Ni ions, stopped in the middle of the gas
cell, surviving the transport towards the exit hole in their ionic form is 0.5 % when the
impinging beam is less than 0.1 ppA.  This decreases further to 0.033 % when the beam
amounts to 1 pnA (the given efficiencies do take into account the transmission through
the SPIG and through the mass separator, measured to be 60%).  This means that more
than 99 % of the original Ni ions are immediately neutralized.  By applying resonant laser
light some 10 % can be re-ionized, at least when the primary beam is below 1 pnA.
Above this value, saturation in the extracted current is observed.  A number of



conclusions can be drawn from the observations presented in the figures 3 and 4.  In
figure 3, the Ar signal is only one order of magnitude larger than the Ni (off resonance)
signal.  But by stopping one 30 MeV 58Ni ion in 0.5 atmosphere Ar a total of 30x106/26 ~
1.1x106 Ar+ ion –electron pairs are created.  This means that the Ar ions are even more
efficiently neutralized than the Ni ions.  Secondly, due to this strong neutralization, the
effect of the high density of ion-electron pairs in the beam interaction zone diminishes
fast.  This can be seen from the strong Ni on – resonance signal in figure 3 and the
constant efficiency of the laser re-ionization.  Only at cyclotron intensities above 1 pnA
also recombination of the laser ions becomes important (see fig. 4).  A rough calculation
of the ion - electron density points to recombination effects in this set-up from 108 ion -
electron pairs per cm3 on.  There is another evidence for the previous statement: the dip in
the Ni on – resonance time profile in figure 3 at the time of the beam impact points to a
recombination process near the exit hole which is related to the high density of Ar ions at
that instant.  All this indicates that the local and momentary ion – electron density is
crucial in determining the recombination rate.
Another way to study recombination in a pencil-like beam has recently been developed by
using resonant laser ionization on trace elements released from a filament.  In [2] such
studies are presented: two collinear laser beams (cross section ~ 12 mm2) resonantly
ionize Ni atoms along their path in the gas cell, 5 cm long.  In fact, the used set-up is very
similar to the one discussed above but now the 58Ni is not introduced by a cyclotron beam
but by heating a Ni filament, evaporating neutral Ni atoms (see figure 2).  The time
profile of the ions coming out after one shot of the lasers is then recorded.  By varying the
temperature of the Ni filament and thus the concentration of Ni atoms, the intensity of the
signal can be changed.  No electrical fields are applied in the gas cell.  Changing the ion –
electron concentration in the laser interaction zone from 1x103 per cm3 to 4x 104 per cm3

does not change the time profile (see figure 18 in [2]).  But at an ion-electron density of
107 per cm3 the signal drops indicating that a Ni ion has a considerable chance to
recombine with an electron from another ion-electron pair.  Such process is called volume
recombination (see below) and is by definition rate-dependent.  A proof for this can be
found in the drop in intensity of potassium ions (see figure 18 and the related discussion
in [2]).  Potassium is constantly released from all parts of the gas cell and thermo-ionized
by the Ni filament.  A constant time profile is expected but at the densities where Ni ions
start to recombine, thus during the production period of laser ions and electrons, the
current of potassium is also reduced.
These two studies with the laser ion source indicate that even at time scales around 5 ms,
recombination losses start to be important once the ion-electron density is above 107 – 108

cm-3.  Such densities are easily reached when the buffer gas is used to slow down
energetic ions.
As an example for the further discussion, a beam of Rh ions will be considered.  Using
ion range calculations [6], now in 1 atmosphere of He, a Rh ion will make 3.8x105 ion -e
pairs per cm along its track when the energy of the beam is around the Bragg peak (~ 145
MeV).  This decreases to 1.5x105 ion - e pairs per cm at 10 MeV and to 4x104 ion - e pairs
per cm at 10 keV (here we take electronic and nuclear stopping).  Taking some typically
value of 8x104 ion – electron pairs per cm leads to a density along the track of one Rh ion
of 8x108 ion-e pairs/cm3.



It is clear from these numbers and from the observations with stable Ni beams, that in
order to collect all charges created by the passage of an intense ionizing beam, the three-
body ion-electron recombination process should be stopped.  The way out is to separate
with an electrical field immediately the positive ions from the electrons and this is exactly
what has been done for almost a century in ionization chambers.
Two types of recombination are considered in such a chamber: columnar or initial
recombination where the ion recombines with an electron from the same track and volume
or general recombination where the ion recombines with an electron from another track.

2.1 Columnar (initial) recombination

A simple estimation of the field needed to separate the electrons from the ions is given in
[7].  The average separation di between the positive ions having a density ni is roughly:

( ) 31−≈ ii nd {3}
This is also the average separation between electrons and thus the Coulomb force FC
acting between an ion-electron pair is:
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with ε the di-electric constant of the gas ( 0εεεεεεεε ≅ , the di-electric constant for vacuum) and
e the charge unit.
The field needed to produce an equal and opposite force is then:
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Table 2 gives an estimation of the field strengths needed. Even at high ion – electron
densities, the field strengths required are moderate.  But this only gives a static
description of the problem and time-dependent considerations should be implemented
(see below).
Columnar recombination is in first order not rate-dependent.  For highly-ionizing particles
the saturation voltage, see figure 1, from where on all charges are collected and thus the
columnar recombination losses are negligible, will be element- and energy-dependent.
This will lead to a characteristic I – V plot and this principle is presently used in modern
dosimetry detectors called recombination chambers [8].
Columnar recombination has been studied in great detail and methods have been
developed to extract out of the I-V characteristics the difference between columnar and
volume recombination [7].  Not only the field strength in the chamber is of importance
but also the angle between the path of the ionizing radiation and the direction of the
electrical field [9].

2.2 Volume (general) recombination

The ion cloud and the electron cloud from a single track move under the influence of an
electrical field in opposite directions.  When the ionizing rate is quite high, recombination
can take place between ions and electrons from different tracks.  This process is called
volume or general recombination and is rate-dependent.  The losses will depend on the



time scale of the recombination, see equation {1}, and on the time spent by the ions and
electrons before being collected on the electrodes.
The velocity of positive ions in a gas under the influence of a static electrical field V/d is
given as:

E
d
Vv +++ == µµµµµµµµ {6}

with µ+ the mobility.  The mobility depends on the temperature and pressure of the gas:

2730 ∗
=+ p

Tµµµµµµµµ  {7}

with the pressure p in atmosphere and the temperature T in K.  This means that the
velocity has an E/p dependence, which is a consequence of the fact that the average
energy of the ions is almost constant during its drift to the electrode.  Only at very high
fields this dependence changes to (E/p)1/2.  The situation is quite different for electrons as
will be discussed below.  The reduced field strength in a gas is expressed as E/N (with N
the gas density) and given in Townsend (1 Townsend = 10-17V.cm2). Table 1 gives the
classical mean free path, average velocity, diffusion coefficients and mobility of ions in
like gas under normal conditions [4].  Most other ions in helium as buffer gas, have
mobility coefficients around 20 cm2/V.s [10].
The mobility of electrons is not constant as their energy increases, in between collisions
with gas molecules, under the influence of the electric field.  Table 3 gives the electron
drift velocities in helium as deduced from measurements presented in [11].  The mobility
of electrons is several orders of magnitude larger than the mobility of positive ions.  Of
prime importance to keep this fast drift is to prevent negative ion formation as those ions
move with the speed of positive ions and thus some 1000 times slower than electrons.
Such negative ions can be formed when impurities are present in the gas and for this
reason O2 and water impurities should be kept below the ppm level.  This is technically
feasible [12, 2].
According to Sharpe [13] and later also Colmenares [14] the recombination loss f in
ionization chambers (parallel plate chambers) can be estimated as:
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=
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dQ
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f

2αααα {8}

with d the distance between the plates, α the recombination coefficient (cm3.s-1) and Q the
ionizing rate (cm-3.s-1).  Using the values for ion and electron mobility from table 1 and 3
and an ion-electron recombination coefficient α of 3.25 10-7 cm3.s-1 [3], the losses can be
calculated for three configurations in 1 atmosphere He and in function of the electrical
field strength, see table 4.  The production of the ion – electron pairs is assumed to be
homogeneous over the volume between the two electrodes.
Other forms of chambers (cylindrical or spherical) are also calculated in [13] and typically
give a factor 2 to 8 more losses (due to field geometry).
Inspecting table 4 shows that for all configurations quite high ionizing rates can be
accepted by the ionization chamber provided large field-strengths are used.  However this
brings us to another limiting factor namely space-charge effects resulting from the high
density of positive ions.



3. Space-charge effects

Sharpe [13] calculates the voltage induced by the slowly moving positive ions in the
ionization chamber and thus screening the applied electrical field.  The electrons are
assumed to be collected immediately.  For a parallel plate chamber the following equation
is derived:

2
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When the net field at the anode is reduced to zero, the chamber is called to be space-
charge limited.  Using the value for the He ion mobility from table 1, the ionizing rate Q
can be calculated where the space-charge induced voltage Vind equals the bias voltage
Vappl for three values of d and in function of the electrical field strength, see table 5.  By
comparing table 4 and 5 it is clear that space-charge limitations are occurring already at
lower rates than those where volume recombination losses become important.  The effect
of the space charges is that the net field that the ions do feel will decrease leading to a
reduced velocity and thus a higher space charge.  Furthermore the electron velocity will
also be reduced and this will lead together with the reduced ion mobility to an increase in
recombination, see equation {8}.  The values from table 5 give thus only a rough estimate
which field strengths should be used for a given ionizing rate in order to minimize
recombination effects.  Calculations combining the cumulative effects are in progress.
Other forms of chambers (cylindrical or spherical) are also calculated in [13] and typically
give limiting ionizing rates Q which are a factor of 10 lower (due to field geometry).
Ionization chambers are currently developed for precise beam monitoring of synchrotron
radiation [15], [16] and of high-energetic (~GeV/nucleon) p, d and α beams [17].  In the
first case, X-ray photon (around 20 keV) rates up to 1012 photons/s were directed to the
chamber (1 atmosphere Ar) creating ionization currents up to the 0.1 mA level.  High
beam intensities could also be measured in the second case: up to 1011 protons per spill (1
spill every 1.5 s).  In figure 5, some saturation field strengths are given in function of the
ionizing rate Q for the three ionization chambers.  The saturation field strength is the
electrical field strength in which for a given incoming beam intensity the measured
current saturates (see figure 1).  This does not mean that the ionization chamber has no
recombination losses anymore and different methods can be used to determine the
saturation current [7].  However for the discussion presented here, the saturation voltage
is deduced from inspecting the I-V (current versus voltage) plots presented in the different
articles.  In all cases, the gas was argon but similar values for other gasses are also
presented in [15].  The distance between the two parallel plates varied from 0.8 to 1.25
cm, thus in the range of the 1-cm arrangement presented in table 5.  All measurements do
show a square-root dependence of Q, the ionizing rate, as expected from equation {9}.  In
order to show this behavior, the calculation for different electrode distances of the
induced voltage by space-charge effects given by equation {9} and using the mobility
coefficient for Ar is also given in figure 5.  The measurements of Sugaya et al. for protons
[17] coincides with those from Ahmed et al. for 17 keV x-rays and qualitatively agree
with 1 cm electrode gap calculation.  The measurements of Sato et al. do deviate from the
others.  In contrast the beam here is extremely focussed to a spot size of 0.5 x 0.6 mm2 in
the middle of the gap between the electrodes (d = 1.25 cm) while in the other cases the



beam is distributed uniformly over the gap, as also assumed in equation {9}. The last
point measured by Sato et al. (at a field strength of 2000 V/cm) did not give full saturation
yet for the given ionizing rate.  In fact, the maximum applicable voltage of the chamber
before breakdown limits this experimental point.
Palestini et al. [18] also discuss space charge effects in parallel plate ionization chambers
and they demonstrate that in the very high intensity case a field-free region adjacent to the
anode is created, expanding as the intensity of the ionizing beam increases.

4. Plasma effects

In ionization chambers one should in principle not consider plasma effects as the electrons
are immediately collected and no neutral plasma can be created.  However once the space-
charge limit is reached the situation will be totally different and the field-free region as
discussed by [18] will eventually expand over the whole cell: a weakly-ionized plasma (ni
~ ne << n0 with ni, ne and n0 respectively the ion-, electron- and neutrals density) will be
formed.  Of course in such plasma the recombination rate is high and the gas cell cannot
longer be used to store and transport efficiently the incoming ions.  The ion and electron
density will similarly evolve to a saturation value given by equation {2} in a time given
by equation {1}.  It is difficult to estimate the electron temperature in the gas cell and it
could well be that the plasma is not in thermal equilibrium, therefore it is not easy to fully
characterize the plasmas observed in for instance the IGISOL gas cell.  A consequence of
plasma formation is that collective effects do emerge.  An important observation is the
occurrence of ambipolar diffusion where the ions and electrons do move with the same
velocity (velectrons ~ v+).  A necessary condition is that the Debeye length of the plasma is
of the same order or less then the dimension of the cell.
The Debeye length λD (in mm) is given by the following expression [19]:

e

e
D n

T
69=λλλλ {10}

with Te the electron temperature in oK and ne the electron density in cm-3.  Assuming the
electrons at room temperature and a density of 108 cm-3, the Debeye length is already in
the 0.1-mm range.
A second phenomenon is that the plasma shields itself for external fields through the
formation of a plasma sheath.  The Debeye length is a measure for the penetration of
external fields in the plasma.  A necessary condition is that the number of charges in the
plasma sheath region ND is much larger than 1.  This number is given by [19]:
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Taking the same conditions as just above ND lies in the range of 700 particles.  Another
condition states that the number of collisions with neutral atoms should be small.  This
condition can be quantified as follows [19]:
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Using an ion – electron density of 108 ions per cm3 and the values from table 1 for λ, the
mean free path and vav, the average velocity, the product of ω, the plasma oscillation
frequency, and the mean time τ in between two collisions in the helium gas lies around
0.02.  Clearly this third condition is not fulfilled and one only can speak of a weakly-
ionized plasma.
The term “plasma effects” can be found in many publications on IGISOL set-ups [20].
The term is used to discuss the losses of ion-guide efficiency due to the intensity of the
incoming primary beam and related to this, the rate of three-body recombination.
Although some conflicting results can be found in the literature, Dendooven [20]
concludes that in most measurements a drop in ion-guide efficiency is observed when the
energy deposition in the ion guide stopping chamber leads to the creation of more than
1016 ion – electron pairs per second.  However in the same survey article [20], evidence is
presented where the drop in efficiency seems to be related to extraction problems near the
exit of the gas cell.  The IGISOL approach is based on the evacuation of important parts
of the gas cell within time scales shorter than the time scale of the three-body
recombination (see equation {1}).  The obtained efficiency will be the result of a multi-
parameter balance involving the gas cell design, the beam properties, the purity of the gas
and the extraction conditions.  Therefore it is difficult to compare the results obtained at
different laboratories or even within the same laboratory if the above-mentioned
parameters are not controlled within a reproducible way.   In any case the results of the
studies with ion guide set-ups cannot directly been used for the drift gas cell as here the
concept is completely different with the use of electrical fields to collect all created
electrons.

5. Application to the production of radioactive ion beams.

The basic question will now be addressed if a big gas cell (from several cm3 to several
liters) at moderate pressures (0.1 to 1 atmosphere He or Ar) can be used to slow down
radioactive ions and keep them in their ionic state in order to transport them fast and
efficient to a mass separator.  It is clear from the considerations above that electrical fields
should be firstly used to immediately collect the electrons in order to prevent columnar
and volume recombination and secondly to guide the ions out of the cell.
As described above, the number of ion-electron pairs (Q) created per cm3 and per s is the
most important parameter. Table 6 gives this quantity for a number of specific
applications for the production of radioactive ion beam.

• The first case describes the passage of a primary beam, used to produce radioactive
nuclei in a heavy-ion fusion reaction, through the gas cell.  The chamber will be
immediately space-charge limited and a weak plasma will be the result.  Recent
experiments with the laser ion source at the LISOL facility [2] were conducted to
investigate to what extent it was possible to use electrical fields inside the gas cell to
collect all charges created by the passage of an ionizing laser beam through the cell
(see figure 2).  It was shown there that using a small voltage (3V) on the grid, it was
possible to effectively remove the laser-produced electrons and stop ion- electron
recombination.  Furthermore, by increasing the voltage above 30 V, ions from deeper
in the gas cell were collected on the grid while ions in between the grid and the exit



hole were pushed out faster.  Here we present an on-line measurement with the same
set-up: 58Ni atoms are again evaporated from a filament but now they are ionized by
an impinging 40Ar beam.  From figure 6 it is clear that the electrical field does have an
impact on the ions on their way out of the gas cell.  But not all charges are collected:
the weak plasma shields its interior from the external field as otherwise the hatched
area in figure 6 would not be present.  Indeed, from table 4, it is clear that even for a
electrode gap distance of 1 cm a too high field strength is needed to get above the
space-charge limitation when an ionizing rate of 2.6 1014 ion – electron pairs per cm3

and per s is entering the gas cell.

• Case 2 refers to the use of a gas cell for producing beams of fission products [20, 12].
Here only the fission products are entering the gas cell that is shielded from the
primary proton beam.  However even now, the ion-electron pair production is so high
that the space-charge limit is reached.  The conclusion is that also in this case it is
extremely difficult to use electrical fields inside the gas cell.  Especially when taking
into account that due to the specificity of the application, the electrodes should lie
some 2 to 3 cm apart and that a cylindrical geometry is needed.

• The third case comes from the work at Mainz [21] where resonant laser light is used to
re-ionize the wanted nuclei.  Electrical fields have been successfully used to collect all
the 242mAr ions surviving neutralization during the thermalization in the gas cell.
Indeed the ionizing rate is so low that space-charge effects can be ignored.

• Case 4 describes the possible application of a drift gas cell coupled to the SHIP
velocity separator, the so-called SHIPTRAP project [22].  In heavy-ion fusion
reactions, the produced isotopes can be in-flight very efficiently separated from the
primary beam. At the focal plane a gas cell with dimensions adapted to the beam size
can then be used to store and transport the radioactive ions.  A typical distance
between the electrodes would be 10 cm and according to table 5, a field strength
above 10 V/cm would be needed to overcome the space-charge limitations.

• Case 5 describes the parameters for a gas cell coupled to a heavy-ion fragment
separator.  G. Savard et al. are proposing such a gas cell for producing intense
radioactive ion beams [23].  A heavy-ion beam of 400 MeV/amu impinges on a
fragmentation production target after which the isotope of interest is separated in the
fragment separator.  Assuming a full suppression of the primary beam and of all
unwanted reaction products such as isobaric contaminants, a typical beam further
considered here could be 108  ARh atoms per s.  By a careful ion-optical design of the
fragment separator it should be possible to energy focus the relativistic heavy ions in
order to bunch the range distribution of the fragments [24].  The kinetic energy of the
slowed-down products entering the gas cell is expected to range between 0 to 20
MeV/u.  In order to account for the differences in ion energies and straggling for the
different ion paths in the gas cell a full calculation of the specific reaction is needed.
However as we are only interested in orders of magnitude, for the purpose of
simplicity a mono-energetic ARh beam at 650 MeV will be considered.  Such a 650
MeV beam would be stopped in 1 meter of 0.5 atm He. This means that one Rh



projectile creates 650*106 /41 = 1.6*107 ion-e pairs along its path.  Taking a volume
of 105 cm3 and an intensity of 108 atoms per s this gives an ionizing rate of Q =
1.6*1010 ion-e pairs/cm3s.  Also here the actual stopping process is simplified as the
stopping power dE/dx along the path depends on the energy.  The dimensions of the
cell are such that electrode distances will lie between 10 and 50 cm which, according
to table 5, will imply extremely high field strengths in order to compensate space-
charge effects. A scaled-down cell is presently used at ATLAS and extraction fields
up to 10V/cm were reached [23].

The general problem one is encountering is that in order to keep the one ion of interest,
the particular ARh ion, all the ions from the ion-electron pairs created in the slowing-down
process are also surviving.  Until now we only considered space-charge effects disturbing
the electrical field needed for collecting the electrons, but serious distortions could also be
expected at the exit hole of the gas cell.  Taking up again the example of the 108 650 MeV
ARh beam, when no neutralization occurs a total current of 250 µA is created.  Extracting
these intense currents by static or RF fields in the differential pumping zone where the
transition from high gas pressures in the gas cell to high vacuum in the mass separator
takes place will need special care.  At Jyväskylä, where sometimes currents up to 20 µA
are extracted out of the IGISOL gas cell, transmission problems with the static skimmer
electrode have been observed [20].
Maybe methods can be developed to collect the He ions on the electrodes without
disturbing too much the trajectory of the heavier ions on their way out of the gas cell. The
difference in mobility of He+ ions in He and other ions in He (only a factor of two) seems
to be quite low for this purpose.
Another possibility consists in re-ionizing the atoms of interest as done by resonant laser
light at the LISOL set-up [12, 2].  Losses during transport of the neutral atoms to the laser
interaction zone, due to diffusion to the wall or to chemical interactions with impurity
molecules or buffer gas atoms should be considered when designing the cell.

6. Conclusions

Starting from the century-old experience of gas-filled ionization chambers and recent
measurements with laser ionization in a gas cell, the possibilities have been explored to
use large gas cells for stopping, storing and guiding radioactive ions towards a mass
separator in order to obtain intense beams of short-living nuclei.  A practical limit is
encountered for the maximum intensity of the beams of interest when the space-charge
induced voltage fully counteract the voltage applied on the electrodes collecting the
electrons.  Such limit is also encountered in ionization chambers used for high-intensity
beam monitoring.  If no solution can be found for these problems, the applicability of the
gas cell will be limited by the maximal field strength that can be applied, by the ionizing
rate of the beam and by the maximum charge that can be extracted out of the cell.
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Figure captions

Figure 1
A schematic presentation of a gas-filled ionization chamber.  A beam with an ionizing
rate Q enters the gas cell and the created ions and electrons will be collected on the
respective electrodes.  At low electrode voltages, the recombination rate will be high.  But
eventually at the so-called saturation voltage, the extracted current will reach its full
maximum.

Figure 2
The Leuven laser ion source. Stable Ni ions are brought in by a cyclotron beam while
neutral Ni atoms can be evaporated from a filament.  Re-ionization can resonantly been
done by laser light.  The ions leaving the cell are mass-analyzed by an isotope separator.
A grid in the gas cell can be biased in order to study the effects of an electrical field.

Figure 3
A pulsed beam of 58Ni (50 ms width) enters the Leuven laser ion source.  The time
behavior of the extracted Ar+ and Ni+ ions is recorded (later times means ions from deeper
in the gas cell).  The Ni signal can come from primary Ni ions surviving neutralization
during their journey in the gas cell (58Ni off – resonance) or from re – ionized laser ions
(58Ni on – resonance).

Figure 4
The mass-separated 58Ni current as a function of the incoming 58Ni cyclotron beam
current.  The straight lines give the expected current for a 100% (full), 10 % (dashed) and
1 % (pointed) survival efficiency.  The triangles give the obtained current of surviving Ni
ions (off-resonance) and the circles the current after laser re-ionization (on-resonance).

Figure 5
For three different ionization chambers filled with argon as buffer gas (diamonds, circles
and triangles refer respectively to the work of Sugaya et al. [17], Ahmed et al. [16] and
Sato et al. [15]), the field strength needed to reach the plateau in the I-V plot is given as a
function of Q, the ionizing rate.  Also given is the calculated field strength for a a number
of electrode distances as a function of Q using equation {9} for Ar (µ+ = 1.7cm2/V.s).
The five cases, given in table 6 and discussed in the text, are also given; note that for case
4 and 5 helium is used as buffer gas and therefore the results from table 5 are used.

Figure 6
The influence of an electrical field for blocking and collecting the ions produced through
the impact of a pulsed 40Ar beam.  The current at mass 58Ni is measured with (thick line)
and without the blocking field (thin line).  The 58Ni is evaporated as neutral atoms from a
filament and is then ionized through the beam impact.



Table captions

Table 1
The classical mean free path λ, average velocity vav, mean energy to create an ion –
electron pair Wi, diffusion coefficient D+ and mobility µ+ of ions in like gas under normal
conditions [4]

Table 2
Field strengths needed to produce a repulsive force counteracting the attractive Coulomb
force between ions and electrons at a given density n+ = n- = ni .

Table 3
Electron drift velocities in helium as deduced from measurements presented in [11].

Table 4
Volume recombination losses in parallel plate ionisation chamber filled with 1
atmosphere helium (µ0=10.2 cm2/V.s) in function of the ionisation rate Q, the applied
electrical field E and the distance d between the plates.

Table 5
By using equation {9} for He as gas (µ+ = 10.2cm2/V.s) the ionizing rate Q is calculated
for which the field strength induced by space-charge effects equals the applied field
strength.  Three different distances between the parallel electrode-plates are given.

Table 6
The number of ion-e pairs created per cm3 and per s in a gas cell by the passage of
different beams.  The dimensions of the gas cell have been adapted to the reactions.  The
p-induced fission relates to the work at Leuven [12] and Jyväskylä [20] where the primary
beam is shielded from the gas cell with a thin foil. The 242mAm refers to the work of
Mainz [21], also here the primary beam is not entering the gas cell.  The example of the
65 MeV Po beam is illustrative for radioactive beams produced in
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Figure 4
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Figure 5
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Gas λ
(cm)

vav
(cm/s)

Wi
(eV)

D+

(cm2/s)
µ+

(cm2/V.s)
H2 1.8x10-5 2x105 37 0.34 13.0
He 2.8x10-5 1.4x105 41 0.26 10.2
Ar 1.0x10-5 4.4x104 26 0.04 1.7
O2 1.0x10-5 5x104 31 0.06 2.2

Table 1

ni (cm-3) 1.E+03 1.E+05 1.E+07 1.E+09 1.E+11 1.E+13
Vappl. / d (V/cm) 1.44E-05 3.11E-04 6.69E-03 1.44E-01 3.11E+00 6.69E+01

Table 2

E
(V/cm)

E/N (Townsend)
@ 0.5 atm

v- (cm/s)

10 0.082 1.1 105

50 0.41 3 105

250 2.05 6 105

500 4.1 1 106

1000 8.2 1.8 106

Table 3

d = 1 cm d = 10 cm d = 50 cm

1% loss 10% loss 1% loss 10% loss 1% loss 10% loss
E vion velektron Q Q Q Q Q Q

V/cm (cm/s) (cm/s) (cm-3.s-1) (cm-3.s-1) (cm-3.s-1) (cm-3.s-1) (cm-3.s-1) (cm-3.s-1)
10 1.0E+02 1.1E+05 2.1E+12 2.1E+13 2.1E+10 2.1E+11 8.3E+08 8.3E+09
50 5.1E+02 3.0E+05 2.8E+13 2.8E+14 2.8E+11 2.8E+12 1.1E+10 1.1E+11
250 2.6E+03 6.0E+05 2.8E+14 2.8E+15 2.8E+12 2.8E+13 1.1E+11 1.1E+12
500 5.1E+03 1.0E+06 9.4E+14 9.4E+15 9.4E+12 9.4E+13 3.8E+11 3.8E+12
1000 1.0E+04 1.8E+06 3.4E+15 3.4E+16 3.4E+13 3.4E+14 1.4E+12 1.4E+13

Table 4.



d = 1 cm d = 10 cm d = 50 cm
E Q(Vappl = Vind) Q(Vappl = Vind) Q(Vappl = Vind)

(V/cm) (#ion-e/cm3.s) (#ion-e/cm3.s) (#ion-e/cm3.s)
10 2.3E+09 2.3E+07 9.0E+05
50 5.6E+10 5.6E+08 2.3E+07
100 2.3E+11 2.3E+09 9.0E+07
250 1.4E+12 1.4E+10 5.6E+08
500 5.6E+12 5.6E+10 2.3E+09
1000 2.3E+13 2.3E+11 9.0E+09

Table 5

case Incoming beam gas Q
(#ion-e/cm3.s)

1 1nA 200 MeV 40Ar 0.5 atm Ar 2.6 x 1015

2 5.6 x 108 fission-fragments per s
(induced by 1µA 30 MeV protons)

0.5 atm  Ar 5.1 x 1012

3 5.5  242mAm per s (induced by 5 µA d) 0.04 atm Ar 2.6 x 103

4 103 65 MeV Po 0.5 atm He 1.3 x 107

5 108 650 MeV Rh 0.5 atm He 1.6 x 1010

Table 6
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