Response of a PMI Chamber exposed to Mixed High-Energy Radiation Fields
 Simulations and Measurements

Helmut Vincke, Norbert Aguilar, Doris Forkel-Wirth, Michele Pangalo, Daniel Perrin, Michel Renou, Chris Theis

TIS-RP

Contents

- Details about PMI chamber
- Experimental area + set-up
- Simulation results
- Measurement results
- Comparison between simulation and measurement
- Conclusion

Hull composition: $\mathrm{C}-\mathrm{H}_{2}$

Filling gas: air atmospheric pressure

Active volume: 31

Working voltage:
$\sim 460 \mathrm{~V}$

SPS secondary hadron beam is hitting a copper target \rightarrow leading to irradiation of the PMI chambers with different radiation fields at various positions.

Beam parameters:

Momentum:
$120 \mathrm{GeV} / \mathrm{c}$

Intensity:
9*107 hadrons/
SPS extraction
Beam composition:
$60.7 \% \pi^{+}$
34.8% protons
4.5 \% K+

Simulation results

- Analysis of the fluence reaching the various detector positions.
- Analysis of the simulated counting rate at the various detector positions.

positions

Particle fluence at detector position 2

Particle fluence at detector position 4

Particle fluence at detector position 6

Number of particles per primary particle hitting the various detector positions (including also particles below 0.1 MeV)

Analysis of the simulated counting rate at the various detector positions

Procedure to achieve simulated counting rate

FLUKA calculation of energy deposition in active volume of chamber
"Energy to iont/e-" conversion factor leads to number of produced ion+/e- pairs.

Conversion of number of ion + /e- pairs into pC .

One pC corresponds with one PMI counts.

beam

Position	Counts/ prim. particle $* 10^{-6}$	Eror of mean $* 10^{-6}$
Pos 1	5,63	$\pm 0,12$
Pos 2	16,06	$\pm 0,44$
Pos 3	67,46	$\pm 0,73$
Pos 4	85,33	$\pm 0,64$
Pos 5	96,20	$\pm 1,26$
Pos 6	108,31	$\pm 0,82$

1 Counts = 10 nGy deposited in active volume

Influence of the different particle types (\%) to the final counting rate of the detectors at the various positions

Position	Simulation Counts/ prim, part. $* 10^{-6}$	Simulation error $* 10^{-6}$	Measurement Counts/ prim, part. $* 10^{-6}$	Measurement error $* 10^{-6}$	Simulation/ Measurement	Error
Pos 1	5,63	$\pm 0,12$	5,64	$\pm 0,56$	0,998	$\pm 0,102$
Pos 2	16,06	$\pm 0,44$	15,58	$\pm 1,56$	1,031	$\pm 0,107$
Pos 3	67,46	$\pm 0,73$	67,25	$\pm 6,93$	1,003	$\pm 0,1044$
Pos 4	85,33	$\pm 0,64$	79,00	$\pm 8,67$	1,080	$\pm 0,119$
Pos 5	96,20	$\pm 1,26$	89,39	$\pm 9,47$	1,076	$\pm 0,115$
Pos 6	108,31	$\pm 0,82$	115,74	$\pm 17,99$	0,936	$\pm 0,14,6$

1 Counts = 10 nGy deposited in active volume

Conclusion

- PMI monitor response measurements in the CERF radiation field were performed in August 2003
- Simulations of these measurements were done in order to understand the physics leading to the counting rate results.
- Very good agreement between the simulations and the measurements was achieved
- In terms of number of particles reaching the PMIs, photons dominate in all 6 positions.
- Neutrons dominate the energy transported towards Position 1, charged hadrons the one towards Position 6.
- The contribution to the final counting rate is dominated by neutrons in Position 1 and by electrons and positrons in Position 6.

