

Instrumentation for Machine Protection at FERMI@Elettra

L. Fröhlich, A. I. Bogani, K. Casarin, G. Cautero, G. Gaio, D. Giuressi, A. Gubertini, R. H. Menk, E. Quai, G. Scalamera, A. Vascotto (Sincrotrone Trieste, Basovizza, Italy) L. Catani (INFN, Rome, Italy), D. Di Giovenale

DIPAC 2011, 2011-05-17

FERMI@Elettra

	Energy	Bunch Charge	Repetition Rate	Beam Power
Typical	1.2 GeV	350 pC	10 Hz	4.2 W
Design	1.5 GeV	1 nC	50 Hz	75 W

DIPAC 2011, 2011-05-17

Ionization Chambers

DIPAC 2011, 2011-05-17

Ionization Chambers

- 1 ionization chamber per undulator segment (19 total)
- Simple milled aluminum enclosure
- Electrodes: printed circuit boards
- Use in air (Fermi) or with gas flux
- Volume: 1.3 l
- Sensitivity (air): ~46 µC/Gy

- Integrated readout and HV generation 0...1000 V
- Microprocessor controlled
- Ethernet interface
- Charge-integrating amplifier and 20-bit ADC

- Full charge range: 0...50 pC — 0...1.8 nC
- Integration time: 1 ms 1 s
- 2 programmable alarm outputs
- Noise floor (with Fermi chamber): <0.4 µGy/h (rms)

DIPAC 2011, 2011-05-17

Online Solid-State Dosimetry

DIPAC 2011, 2011-05-17

RADFET Dosimeters

- MOSFETs with 300 nm insulator layer
- Readout: Track voltage for constant current

(490 μ A) between source and drain

DIPAC 2011, 2011-05-17

Lars Fröhlich, Sincrotrone Trieste

RADFET Reader

- Microprocessor controlled
- Ethernet connection
- 4 RADFET channels (up to 25 V)
- Programmable interlock output
- Readout period down to 10 s
- Uses standard USB cables

DIPAC 2011, 2011-05-17

Dose History Undulator 1

DIPAC 2011, 2011-05-17

Lars Fröhlich, Sincrotrone Trieste

Cherenkov Fiber Beam Loss Position Monitor

DIPAC 2011, 2011-05-17

- 100 m long fibers
- 250 MS/s ADC \rightarrow longitudinal resolution ~50 cm

DIPAC 2011, 2011-05-17

Lars Fröhlich, Sincrotrone Trieste

aelettra

Undulator Cross Section

DIPAC 2011, 2011-05-17

Lars Fröhlich, Sincrotrone Trieste

FERMI @elettra

Beam Loss Position Monitor

- Modular frontend electronics
- Multi-pixel photon counters (MPPCs): 400 avalanche photodiodes in parallel at 70 V reverse bias
- Temperature-compensated gain
- Configurable alarm thresholds

Signal Processing

DIPAC 2011, 2011-05-17

Lars Fröhlich, Sincrotrone Trieste

Thanks for your interest.

Many thanks to:

- Mario Ferianis, Fabio Giacuzzo, Alessandro Carniel, and the instrumentation and controls groups of Sincrotrone Trieste
- Arne Miller (Risø High Dose Reference Laboratory, DK)
- Andrew Holmes-Siedle (REM Oxford Ltd., UK)