

LHC machine EMC Workshop 25th Nov. 2004

POWER QUALITY, LHC EARTHING AND CABLE INSTALLATION

- 1. **Definition** of Power Quality and Network Disturbances
- 2. Statistics 2003
- **3. Harmonics**
- 4. LHC Engineering Specification
- 5. LHC earthing system
- 6. LHC cable installations
- 7. Conclusions

K. KAHLE, TS-EL

Standards and Norms

EN50160	Voltage characteristics of electricity supplied by public distribution systems
IEC61000-2-2	Compatibility levels for low frequency conducted disturbances
IEC61000-2-4	Compatibility levels in industrial plants for low frequency conducted disturbances
IEC61000-2-12	Compatibility levels for low frequency conducted disturbances in MV systems
IEC61000-3-4	Limitations of emissions of harmonic currents for equipment > 16A
IEC61000-3-6	Assessment of emission limits for distorting load in MV and HV power systems

Example 2 Earthing

Power Quality

= Quality of electrical energy supplied

Statistics

ec. Earthing

Cabling

Definition

Eng.Spec.

Earthing

Cabling

MAINS FAILURES VOLTAGE DIP / VOLTAGE SWELL Causes: 1500 DIP **SWELL** - thunder-storms 1000 500 voltage (V) -short-circuit inside CERN 0 200 250 - Emergency Stop operation 300 100 -500 -1000 **Consequences:** -1500 - accelerator stop time (ms) TRANSIENTS HARMONICS 900 V for 0.1 ms 1500 1500 1000 1000 500

Definition

Eng.Spec.

Earthing

Cabling

MAINS FAILURES

Causes:

- thunder-storms
- short-circuit inside CERN
- Emergency Stop operation

Consequences:

- accelerator stop

VOLTAGE DIP / SWELL

Causes:

- sudden change of load, inrush
- short-circuits inside & outside CERN
- thunder-storms

Consequences:

- sometimes accelerator stop

Eng.Spec.

Earthing

MAINS FAILURES

Causes:

- thunder-storms
- short-circuit inside CERN
- Emergency Stop operation

Consequences:

- accelerator stop

VOLTAGE DIP / SWELL

Causes:

- sudden change of load, inrush
- short-circuits inside & outside CERN
- thunder-storms

Consequences:

- sometimes accelerator stop

TRANSIENTS

Causes:

- switching compensators ON
- power converters (thyristors)
- thunder-storms

Consequences:

- failure of electronics

MAINS FAILURES	VOLTAGE DIP / SWELL
Causes:	Causes:
- thunder-storms	- sudden change of load, inrush
- short-circuit inside CERN	- short-circuits inside & outside CERN
- Emergency Stop operation	- thunder-storms
Consequences:	Consequences:
- accelerator stop	- sometimes accelerator stop
TRANSIENTS	HARMONICS
TRANSIENTS Causes:	HARMONICS Causes:
TRANSIENTSCauses:- switching compensators ON	HARMONICS Causes: - non-linear loads
TRANSIENTSCauses:- switching compensators ON- power converters (thyristors)	HARMONICS Causes: - non-linear loads (office PC's, power converters etc.)
TRANSIENTSCauses:- switching compensators ON- power converters (thyristors)- thunder-storms	HARMONICS Causes: - non-linear loads (office PC's, power converters etc.)
TRANSIENTSCauses:- switching compensators ON- power converters (thyristors)- thunder-stormsConsequences:	HARMONICS Causes: - non-linear loads (office PC's, power converters etc.) Consequences:
TRANSIENTSCauses:- switching compensators ON- power converters (thyristors)- thunder-stormsConsequences:- failure of electronics	HARMONICS Causes: - non-linear loads (office PC's, power converters etc.) Consequences: - malfunctioning of electronics

Statistics 2003: 400kV network

Definition

Eng.Spec.

Statistics

c. Earthing

Cabling

Statistics 2003: 18kV network

voltage disturbances (voltage phase-ground) 200 180 **am plitude (%)** 140 150 100 100 100 100 100 100 100 100 **100%** = nominal voltage 40 20 0 100 200 300 700 0 400 500 600 long-term red colour: major events duration (ms) (accelerator stop)

Definition

Statistics

Eng.Spec.

ec. Earthing

Cabling

Statistics 2003: 400V network

voltage disturbances (2003)

Definition

Statistics

Earthing

Cabling

Worst-case Undervoltages 0.4kV (2003)

Dip	Duration	Location	Cause
- 71 %	180 ms	Buildg. 2660, PA6	short circuit 18 kV
- 34 %	110 ms	Station ERD1/8R	thunder-storm
- 32 %	130 ms	Buildg. 2260, PA2	thunder-storm
- 30 %	110 ms	Booster SVC	thunder-storm
- 28 %	70 ms	Station ERD1/8R	thunder-storm

(voltages phase-ground)

Worst-case Overvoltages 0.4kV (2003)

Swell	Duration	Location	Cause
+ 25 %	30 ms	ESD1/BK6	unknown
+ 20 %	30 ms	ESD1/BK6	unknown
+ 18 %	50 ms	EYS01/PA6	unknown
+ 16 %	50 ms	EYS01/PA6	unknown
+ 13 %	10 ms	EAD345/PA2	unknown

(voltages phase-ground)

Statistics: network disturbances

The MAJORITY of network disturbances is caused WITHIN CERN.

The MAJORITY of network disturbances has no consequences.

Main cause of Major Events: thunder-storms

Harmonics

Harmonic distortion:

- up to 40th

- even harmonics are low (symmetry)

$$THD = \sqrt{\sum_{n=2}^{40} \left(\frac{I_n}{I_1}\right)^2}$$

CERN – harmonic levels: THD [IEC 61000-2-4 (class 1)] - See engineering Specification

max. 5 %

Exception: large quantities of similar power converters connected to one transformer (e.g. LHC powering, ADT converters, CERN Computer Center build. 513)
Study required

Earthing

Harmonics

Harmonic emission (non-linear loads):

- 6-pulse thyr. power converters: 5, 7, 11, 13th
- 12-pulse thyr. power converters: 11, 13, 23, 25th
- single-phase PC's: 3, 5, 7th

(If 3rd harmonics: Neutral current can exceed phase current!) Remedies:

- Limit harmonic emission of load (IEC61000-3-2 and 3-4)
- 12pulse instead of 6pulse
- reduce network impedance (cables, special transformer)
- harmonic filters (Static Var Compensator 18kV)
- transformers: earthed screen between HV/LV winding
- separate machine and general services !

LHC Engineering Specification

Nominal voltage	400/230 V	
Maximum operating variations	+/-10 %	
Nominal frequency	50 Hz	
Maximum variations	+/-0.5 Hz	
Total Harmonic Distortion THD	5 %	
	J /0	
Voltage unbalance	2 %	

LHC Engineering Specification

Transient voltage disturbances:

Peak mains surges

1200 V for 0.2 ms

Mains over voltage, typical value 50% of Un for 10 ms

Voltage drops

50 % of Un, typically 100 ms

LHC earthing system

- at CERN: TN-S low voltage system (earth and Neutral separate)
- One single earthing system (not several different earthing systems!!!)
- systematic 'meshing' of the earthing system
- EVERYTHING connected to the earthing system
- 120 mm2 along the LHC tunnel
- 120 mm2 around each Alveole
- 120 mm2 connected to the underground building structure
- 120 mm2 connected to the surface building structure (via shafts)
- 120/240 mm2 connected to the transformer starpoints

LHC cable installations

Cable ladders around LHC:

- Earthing cable 120mm2 all around the machine
- connected to earthing system every 25m
- sections: electrically interconnected
- parallel cable ladders: electrically interconnected
- good for equipotentiality

LHC cable installations

- all TS-EL cables (power + control): screen earthed on both ends
- AC three-phase cables installed in tri-fold arrangement
- max. 2 layers of power cables
- polarity of DC cables

- user's cables: screen earthed acc. user's convention
- separation: CONTROL DC AC (different cable ladders)
- UA straight sections: separation CONTROL BDI (coax. meas.)
- safety cables (Alarm 3, AUG, safety lights): 'goulotte de sécurité'
- RF and Kicker cables: separate cable ladders

Cable screens

General rule: earthing of cable screens on both sides !

- Power cables HV, LV
- HF and LF coax. cables
- measurement cables
- signal cables

Exception, if 5 conditions are fulfilled simultaneously: -See Alain CHAROY

- e.g. Cryo temperature measurement CERNOX
- e.g. Huba Piezo Gauge

Conclusions 1/3

Transient network disturbances:

- * MAJORITY of network disturbances is caused WITHIN CERN
- * MAJORITY has no consequences
- * Main cause of Major Events: thunder-storms

* To assure the functioning of equipment through disturbances, definition of tolerance levels for user's equipment:

LHC Engineering Spec. EDMS113154 (28.07.2000) "Main Parameters of the LHC 400/230V Distribution System"

Conclusions 2/3

Earthing System:

- * Equipotentiality
- * as many interconnections as possible (mesh)
- * as many loops as possible (mesh)
- * all buildings interconnected
- * one single earthing system for EVERYTHING
- * connected to the building structure
- * connected to all metallic parts (rails, racks, platforms)
- * connected to all transformer starpoints
- * Earth connections of equipment as short as possible

Conclusions 3/3

Cabling:

- * Separation of CONTROL AC DC cables
- * Screen earthed on both ends
- * AC 3phase cables in tri-fold

Questions ?

Measurem.

Statistics

s Sin

Simulation

Reliability