#### LHC Collimation and Loss Locations BLM Audit

Th. Weiler, R. Assmann, C. Bracco, V. Previtali, S Redaelli

Accelerator and Beam Department, CERN





#### Outline

- Introduction / Motivation
  - LHC Layout
  - The LHC Challenge
  - Collimation Principle / Multi Stage Cleaning
- Loss Rates
- Intensity and Cleaning Inefficiency
- Simulations: SixTrack and Beam Loss Pattern
- Loss location around the ring (injection and top energy)
- Summary

## Layout of the LHC Ring



- 7 TeV protons for collision
- super-conduction magnets to bend and focus beam
- four experimental insertions
- two dedicated cleaning insertions in region with normal conducting magnets
- dump protection (in case of kicker failure)

#### **The LHC Challenge**



Beam momentum [GeV/c]

- Stored beam energy 360 MJ,  $\approx 200 \text{ times larger than any other existing proton machine, enough energy to melt <math>500 \text{ kg}$  of copper.
- For quenching a superconducting magnet one needs  $\approx 10 \, \text{mJ} \, \text{cm}^{-3}$

## **Multi-Stage Cleaning**



## **Multi-Stage Cleaning**



#### Loss Rates (slow)

The following table summarises the specified maximum loss rates for a safe operation of the LHC machine and its collimation system.

| Mode      | Т           | au    | $ m R_{loss}$          | $\mathbf{P}_{\mathbf{loss}}$ |
|-----------|-------------|-------|------------------------|------------------------------|
|           | [s]         | [h]   | $[p/\operatorname{s}]$ | [kW]                         |
| Injection | cont.       | 1.0   | $0.8 	imes 10^{11}$    | 6                            |
|           | 10          | 0.1   | $8.6\times10^{11}$     | 63                           |
| Ramp      | $\approx 1$ | 0.006 | $1.5 	imes 10^{13}$    | 1098                         |
| Collision | cont.       | 1.0   | $0.8 	imes 10^{11}$    | 97                           |
|           | 10          | 0.2   | $4.3 	imes 10^{11}$    | 487                          |

keep in mind that for nominal LHC operation at 7 TeV the beam lifetime is 20 h

#### Loss Rates (fast)

For an asynchronous dump (dump kicker pre-fire) it is assumed that 6 bunches can be lost into the collimation system. Similar scenario as for injection kicker failure.

- collimators (prim. and sec. type) can sustain shock beam impacts of  $6.4 \text{ MJ} \text{ mm}^{-2}$  in 200 ns (7 TeV)
- TCT collimator may be hit by one bunch in case of misalignment of the dump protection by about  $2\sigma$ , otherwise the TCT is in the shadow of the dump protection and primary/secondary collimators. The intensity of one bunch is sufficient to damage the collimator (tertiary are made of tungsten).

#### **Intensity and Cleaning Inefficiency**



BLM Audit - p. 8/22

#### **Simulation Tools: SixTrack**

- For the collimation studies we use an extended version of SixTrack (full 6d treatment) including a scattering routine for simulating the interaction of the primary protons in the collimator (Colltrack routines). The field maps are generated using MADX (using official LHC optics).
- To reduce computing time only the beam halo, which hits the primary collimator ( $6\sigma$  half-gap), is considered in the simulations. A typical simulation tracks around 5 million particles over 200 turns. Reminder: aim is a cleaning inefficiency of  $2 \times 10^{-5}$  m<sup>-1</sup>
- In general the simulation treats only the beam halo particle, beam gas interactions are not included. But it is possible load an external distribution for tracking studies (e.g. for kicker failure or for p-p interactions)

#### **Simulation Tools: Beam Loss Pattern**

The tracking information received by SixTrack is afterwards analysed using the beam loss pattern program. It compares the particle tracks with an detailed aperture model and returns the loss locations (particles touching the aperture before being absorbed in a collimator) with an 10 cm resolution.



#### **System Performance at 7TeV (Phase1)**



#### **Cleaning Insertion in IR7**



## **System Performance at Injection**



## **System Performance at 7TeV (Phase1)**

(with closed orbit, alignment error, jaw flatness error)



## **p-p Interactions (DPE)**



#### **Losses for Ions**



Beam 2 @ collision Particle losses in II 16,20 Pb.265 Ph 284 ph203 TI283 T1282 11201 T1200 Hg<sup>280</sup> Hg<sup>139</sup> others 388 400 420 distance from IP7 (m) 440 460 480 500 20111110 MB.C1217.52 MB.AMI7.B2 111110m MB.AA27.582 MB.B1217.82 加たのない 4B.A30.7.62 MB.B5867.82 MB.BH1.3 50 Beam 2 @ collision Particle losses in IR7, =12min 650 700 750 800 850 900 1000 distance from IP7 (m)

Beam<sub>2</sub>

G. Bellodi LHC CWG meeting Nov.2006



#### **Simulation Results available**

Overview of available simulated cases.

- standard optics (injection, early collision, all IRs squeezed, IR1 and IR5 squeezed), ideal machine
- start-up configuration (early collision optics with reduced number of TCS collimators in IR7)
- commissioning scenarios
- energy ramp
- error scenarios
  - collimator misalignment (tilt, gap, offset)
  - closed orbit
  - aperture misalignment

Iosses from p-p interactions in the IRs (only IR5 so far)

#### **Loss Locations**

| injection energy |               |         |         |             |         | collision energy |         |         |        |
|------------------|---------------|---------|---------|-------------|---------|------------------|---------|---------|--------|
| bear             | beam 1 beam 2 |         |         | beam1 beam2 |         | m 2              |         |         |        |
| Q11.R3           | Q27.R7        | Q28.R3  | MB20.L6 | Q31.L7      | MB11.L7 | Q6L3             | Q21.R7  | Q11.R6  | Q9.L7  |
| DFBA.R6          | Q31.R7        | Q18.L4  | MB16.L6 | Q27.L7      | MB9.L7  | Q8.R7            | MB34.L8 | MB12.R6 | MB9.L7 |
| MB9.R7           | Q33.L8        | Q10.L4  | MB14.L6 | Q23.L7      | Q8.L7   | MB9.R7           | Q33.L8  | Q25.R6  | Q8.L7  |
| MB11.R7          | Q29.L8        | Q22.R5  | MB12.L6 | Q19.L7      | MB8.L7  | Q9.R7            | Q25.L8  | Q33.R6  | MB8.L7 |
| Q11.R7           | Q25.L8        | Q28.L6  | MB9.L6  | MB19.L7     |         | Q10.R7           | Q17.L8  | Q19.L7  |        |
| MB13.R7          | Q2.R8         | MB28.L6 | MB8.L6  | Q15.L7      |         | MB11.R7          | Q16.R8  | Q13.L7  |        |
| Q13.R7           | Q6.R8         | Q25.L6  | Q4.L6   | MB15.L7     |         | Q11.R7           | Q30.R8  | MB13.L7 |        |
| Q23.R7           |               | Q20.L6  | Q11.R6  | Q11.L7      |         | Q13.R7           | Q22.L1  | Q11.L7  |        |
|                  |               |         |         |             |         | MB21.R7          |         | MB11.L7 |        |

#### (see thesis G. Robert-Demolaize)

| p-p interactions for beam 2 from IR5                                         |         |        |         |        |         |        |         |         |  |
|------------------------------------------------------------------------------|---------|--------|---------|--------|---------|--------|---------|---------|--|
| MB.A9L5 MB.B9L5 Q9.L5 MB.B11L5 MS.11L5 Q11.L5 MB.C13L5 MS.13L5 Q13.L5 MS.21L |         |        |         |        |         |        |         | MS.21L5 |  |
| Q21.L5                                                                       | MS.24L4 | Q24.L4 | MS.22R3 | Q22.R3 | MS.14R3 | Q14.R3 | BPM.6R3 |         |  |

## **Summary**

- Full set of simulation tool available to simulate the cleaning inefficiency of the collimation system and generate beam loss maps along the ring.
- Loss location for different optics, running scenarios and mechanical alignment errors available.
- Standard run considers around 5 million particles, due to the required low cleaning inefficiency only a few hundred particles are lost to the aperture.
- Main loss locations (see also previous slide):
  - dispersion suppressor after the cleaning insertions
  - dispersion suppressor in experimental insertion (for p-p interaction)
  - Q6 in IR3

# **Spare Slides**



## **Estimated Damage Interlock Limits**

| Device | Location | Energy  | Condition 1                                   | Condition 2                                        | Condition 3                                   |
|--------|----------|---------|-----------------------------------------------|----------------------------------------------------|-----------------------------------------------|
| TCP    | IR3      | 450 GeV | dN/dt > 1.2e12 p/s<br>for T > 10 s<br>(87 kW) | dN/dt > 6e12 p/s<br>for 1 s < T < 10 s<br>(430 kW) | dN/dt > 1.5e13 p/s<br>for T < 1 s<br>(1.1 MW) |
| TCP    | IR7      | 450 GeV | dN/dt > 1.2e12 p/s<br>for T > 10 s<br>(87 kW) | dN/dt > 6e12 p/s<br>for T < 10 s<br>(430 kW)       |                                               |
| TCP    | IR3, IR7 | 7 TeV   | dN/dt > 0.8e11 p/s<br>for T > 10 s<br>(90 kW) | dN/dt > 4e11 p/s<br>for T < 10 s<br>(449 kW)       |                                               |
| TCSG   | IR3      | 450 GeV | dN/dt > 1.2e11 p/s<br>for T > 10 s<br>(9 kW)  | dN/dt > 6e11 p/s<br>for 1 s < T < 10 s<br>(43 kW)  | dN/dt > 1.5e12 p/s<br>for T < 1 s<br>(110 kW) |
| TCSG   | IR7      | 450 GeV | dN/dt > 1.2e11 p/s<br>for T > 10 s<br>(9 kW)  | dN/dt > 6e11 p/s<br>for T < 10 s<br>(43 kW)        |                                               |
| TCSG   | IR3, IR7 | 7 TeV   | dN/dt > 0.8e10 p/s<br>for T > 10 s<br>(9 kW)  | dN/dt > 4e10 p/s<br>for T < 10 s<br>(45 kW)        |                                               |
| TCLA   | IR3      | 450 GeV | dN/dt > 6e8 p/s<br>for T > 10 s<br>(45 W)     | dN/dt > 3e9 p/s<br>for 1 s < T < 10 s<br>(215 W)   | dN/dt > 7.5e9 p/s<br>for T < 1 s<br>(550 W)   |
| TCLA   | IR7      | 450 GeV | dN/dt > 6e8 p/s<br>for T > 10 s<br>(45 W)     | dN/dt > 3e9 p/s<br>for T < 10 s<br>(215 W)         |                                               |
| TCLA   | IR3, IR7 | 7 TeV   | dN/dt > 4e7 p/s<br>for T > 10 s<br>(45 W)     | dN/dt > 2e8 p/s<br>for T < 10 s<br>(225 W)         |                                               |

R. Assmann: Damage Limits for LHC Collimators (note in preparation)

## **Estimated Damage Interlock Limits**

| Device                | Location           | Energy  | Condition 1                                  | Condition 2                                  | Condition 3 |
|-----------------------|--------------------|---------|----------------------------------------------|----------------------------------------------|-------------|
| TCTH, TCTVA,<br>TCTVB | IR1, IR2, IR5, IR8 | 450 GeV | dN/dt > 6e8 p/s<br>for T > 10 s<br>(45 W)    | dN/dt > 3e9 p/s<br>for T < 10 s<br>(215 W)   |             |
| TCTH, TCTVA,<br>TCTVB | IR1, IR2, IR5, IR8 | 7 TeV   | dN/dt > 4e7 p/s<br>for T > 10 s<br>(45 W)    | dN/dt > 2e8 p/s<br>for T < 10 s<br>(225 W)   |             |
| TCL, TCLP             | IR1, IR5           | 450 GeV | dN/dt > 6e9 p/s<br>for T > 10 s<br>(450 W)   | dN/dt > 3e10 p/s<br>for T < 10 s<br>(2.2 kW) |             |
| TCL, TCLP             | IR1, IR5           | 7 TeV   | dN/dt > 4e8 p/s<br>for T > 10 s<br>(450 W)   | dN/dt > 2e9 p/s<br>for T < 10 s<br>(2.2 kW)  |             |
| TCLIA, TCLIB,<br>TCSG | IR2, IR6, IR8      | 450 GeV | dN/dt > 1.2e11 p/s<br>for T > 10 s<br>(9 kW) | dN/dt > 6e11 p/s<br>for T < 10 s<br>(43 kW)  |             |
| TCLIA, TCLIB,<br>TCSG | IR2, IR6, IR8      | 7 TeV   | dN/dt > 0.8e10 p/s<br>for T > 10 s<br>(9 kW) | dN/dt > 4e10 p/s<br>for T < 10 s<br>(45 kW)  |             |

R. Assmann Damage Limits for LHC Collimators (note in preparation)