
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN – AB DEPARTMENT

Design of a self test functionality for the
Beam Loss Monitoring acquisition chain

Erik Verhagen

Abstract

Technical student work, 6 months, May – November 2006
Under supervision of Bernd Dehning - AB–BI

The CERN’s next experiment facility, the Large Hadron Collider (LHC), is
aimed to explore never reached energy levels in particle physics. As this energy
grows, interactions of the beam with the experiment equipments could be destruc-
tive, particularly for the superconducting magnets. These devices are sensitive to
beam losses, which must be accurately monitored to avoid magnet quenches to oc-
cur. To guarantee this accuracy during the planned LHC operating period of 15
years, a self test functionality for the beam loss monitoring acquisition chain is
foreseen to be implemented, beside the measurement electronics. This report is
giving a detailed description of this functionality, with focus on the measurement
principles, the content of the design and the available features.

Geneva, Switzerland

November 10, 2006

Contents 1

Contents

1 Introduction 3

2 Measurement principles 4
2.1 Gain . 4
2.2 Phase . 4
2.3 Notes . 5

3 Design work 6
3.1 Control Unit . 6
3.2 Division Unit . 7
3.3 Filtering . 8

4 Features 10
4.1 Global constants . 10
4.2 Filter characteristics . 10
4.3 Synthesis . 11

5 Conclusion 13

A Design RTL view 15

B Butterworth IIR filter 16
B.1 Filter design . 16
B.2 Filter comparison result (C) . 17
B.3 Filter simulation result (VHDL) . 18
B.4 Filter test result (Signal tap) . 19

2 Contents

Introduction 3

1 Introduction

The aim of this project is to implement a self test functionality for the LHC Beam Loss
Monitoring system, in order to ensure the good working of its acquisition chain.
This test sequence will take place between the experiments, when no beam is present in the
vacuum tube.

This report offers a detailed description of this system and the information needed to make
a proper use of it during the final implementation in the Beam Loss Monitoring system. An
emphasis is given on useful information needed during the synthesis phase, such as global pa-
rameters, and input frequency considerations. Additionally, this document is aimed to give
technical details on what is done during the 6 months Technical Student work, omitting inten-
tionally the details on how it is done.

First, let’s have a look at the specifications defined at the beginning of the internship period.
The functionality must be an add-on to the existing measurement electronics, in order to per-
form an examination of the acquisition chain. To test whether the chain is ready or not should
consist in a harmonic analysis, based on the data provided by the measurement electronics. The
aim of this system is not to give a detailed value of the chain parameters, but a flag whether or
not a beam can be injected.

The functionality should be capable of performing the analysis on a large number of chan-
nels, but for test purpose the initial configuration will be handling four channels. The target is
the same as the measurement system, a large scale Stratix FPGA hosted on a so-called combiner
card. To ease the comprehension of the design during the reading of this document, a complete
RTL view of the implemented design is provided in Appendix A.

4 Measurement principles

2 Measurement principles

2.1 Gain

The first parameter to measure in a harmonic analysis is the closed loop gain. The simplest
way to achieve this measurement is to calculate the ratio between the peak to peak values of the
acquisition chains output and the stimulating reference signal. These two values should there-
fore be extracted from the running sum inputs and the reference signal ADC’s, and a division
unit is needed to be implemented to perform the calculation.

The peak to peak extraction mechanism (generic peak to peak components in the RTL
view) is based on a successive value comparison, enabling thus the production of an accurate
value every input signal period (sine wave) at the same point. This same point consideration
will be useful for the phase measurement. The processing is the following : when the signal
reaches a maximum, this value is stored in a register, and when a minimum is reached, a com-
binatory subtraction occurs between the two values. A peak to peak value is thus outputted
instantaneously, and a peak to peak valid flag is set to valid during one clock cycle, informing
the cascaded blocks that a new value is available. The clock is given by a local clock tree,
synchronized with the chosen running sum refreshing rate.

The gain is of course based on arbitrary values due to the successive data conversion steps.
Nevertheless, a good precision is necessary on this values. A fixed point arithmetic representa-
tion is chosen to ensure this, with a modifiable number of digits after the coma. This number
will be fixed after the first tests, when a better knowledge of the actual parameters will be de-
fined concerning the acquisition chain (in term of signal latency for example)

2.2 Phase

The phase is the second characteristic of a physical device in a harmonic analysis. It is given
by measuring the interval between the peak to peak value production of the reference signal and
the chosen running sum. According to 2.1 a peak to peak valid signal is notifying the presence
of a new peak to peak value, which occurs every input signal period at the same point (eg. when
a minimum is reached). This is giving the time reference.

In this design, the phase measurement breaks up in to successive operations. First, a period
length information is extracted with a first counter (ref counter) and an arbitrary clock. A num-
ber of clock ticks representing the 360 degrees of one period is thus given. Afterward, a second
counter (referenced channel counter) is counting the delay between both the reference and the
channels peak to peak valid signal, based on the same arbitrary clock. The ratio between this
two numbers gives an information on the induced phase, in the form of a percentage of a whole
period. To obtain a readable value of this ratio, it should by multiplied by 360 for a result in
degrees, or by 2π for a result in radians. The strength of this measurement method is that it only

Measurement principles 5

requires the reuse of the division unit needed by the gain calculation.

Concerning the counters, a reset hold input makes it possible to reset them asynchronously
while keeping on the output the last value reached by the counting process. This is necessary
because the phase delay and the gain operation sequence requires the phase division to occur far
after the reset of the counters. For the channel data counter (channel counter), this reset hold
signal is controlled by either the reference and the channel peak to peak valid flag (through an
OR gate). This is to count only the delay between the 2 input signals. The path of the channels
peak to peak valid flag corresponding to the channel number is selected through a one bit 4 to
1 multiplexer, controlled by the same address lines as the peak to peak values data.

2.3 Notes

In this section, we will discuss some important issues concerning the gain and the phase
measurement. First, an important matter to keep in eye, is that the final destination of this sys-
tem is the combiner card. For test purpose however, the system has been adapted to fit in the
DAB64 FPGA, in append to the BLMTC designed by Christos Zamantzas. This explains why
the processing is done on 4 channels (see RTL view, Appendix A). The sequencing of the mea-
surements is defined as following : first the gain and then the phase of the 4 channels cyclically.

Another important matter is the precision given by the division unit. To ease the magnitude
comparison, a fixed point representation is chosen. This allows to simply compare a defined
number of relevant most significant bits at the system’s output in order to validate or not if
the given values are inside the recommended boundaries. The number of decimals must thus
be statically defined before the synthesis, as shown in the procedure described in 4.1. The val-
ues shown in this report (first test values) are achieved with a precision of 6 digits after the coma.

It is also important to notice that the measured values of gain and phase are concerning the
whole acquisition chain. This implies of course the ionization chamber but also the high voltage
control cable, the low current chamber output coax, the parameters induced by the measurement
electronics and the running sums operation. A little phase is also induced by the filtering fea-
ture of the self test functionality. This must be considered if an accurate closed loop analysis
is planned. In our case of a simple valid / not valid test, these offset values should only be
included in the range boundaries calculation, for the final magnitude comparison.

The last point to mention is concerning the delay induced by the division operation. This
operations are usually done in several clock cycles, which generates an output latency. An effort
has been done in this design to reduce this latency and to make it constant (refer to the design
specifications of the division unit in 3.2). This latency is also dependent on the signal chosen
to clock the division unit. This frequency is by default equivalent to the refresh rate of the
reference input, in order to keep the synchronization needed for debugging purpose. But if a
faster result measurement is needed, this clock signal can also be tied to a global clock out of
the rest of the design, such as a 40 MHz clock tree.

6 Design work

3 Design work

3.1 Control Unit

Like in the most data processing architectures, our system is made of an execution unit
and a control unit. This section is giving a description of the control unit. It is based on a
finite state machine of Moore’s type, and every state is corresponding to an operation inside the
execussion unit. This is the simplest way to achieves a good sequencing between the gain and
phase measurements of the four (and more afterward) channels. Seven states are covered in the
normal sequence for one channel, and 3 error states are present when calculation failures occur.
The state transitions are triggered by both channel and reference p2p valid signals, division unit
control signals and counter overflow flags.

Figure 3.1: State transitions diagram - Control unit

Design work 7

3.2 Division Unit

This section describes the implementation of a home made, fixed point division unit to pro-
cess the calculation of both the gain and the phase. Home made means that it is optimized to
fit in our defined specifications. The first discussed constraint is the amount of logical elements
occupation. Division units are usually quite big, and this has to be constrained to fit in the single
FPGA test environment. The second issue is giving light on the latency needed to complete the
calculation, which is also a typical issue of division units. Pipelined divisions often take a fixed
amount of clock cycles to produce a result.

In order to ensure the lowest possible occupation of this logical block in the FPGA, a sim-
ple structure has been designed in structural VHDL. This is aimed to make a tiny but efficient
design, regardless of the synthesis tool performance. A good comprehension of fixed point
arithmetic is however needed to understand the design tricks used to achieve this work. The
functioning is based on 2 shift registers (one for the partial dividend, the other for the quotient)
and a combinational subtractor. The divider for its part is stored in a static locked register as
the second operand of the subtractor. The principle is that both shift registers shift at every
clock cycle, and the subtractor’s borrow bit indicates if the divider fits in the dividend. If so,
this bit is resulting ’0’, and its complement can be appended to the quotient shift register. In
this case, the remainder has to be concatenated to the higher part of the first subtracters operand.

Figure 3.2: Division registers - Succeeded subtraction

In the other case, if a borrow bit is produced, its complement is also appended to the quotient
register, but the remainder register (subtraction result) is invalidated and a shift on the dividend
register is only operated. When synthesized, this division unit fills only around 1 percent of an
Altera EP1S40 Stratix device, mainly with flip flops (due to the registers).

Now, concerning the latency needed to produce a result. The processing of all the sequential
stages is pipelined, which implies that the latency is only a function of a fixed number of clock
cycles. That is, it is ours to define this number, to ensure that a calculation produces its result
before new data arrives from the peak to peak extractors.

Because the operation process is based on operand shifts, the number of consecutive clock
cycles needed to provide a result depends on the operands size, and the number of significant
bits after the comma. The dividend and result registers shift occurs every clock cycle, regardless
whether or not the subtraction has succeeded. So the number of bits for the result is the same
as the dividend size for an integer division. To perform a fixed point division, the dividend has

8 Design work

to be shifted left again (multiply by 2) as long as the number of wanted bits after the comma is
not reached. The rest of the processing is exactly the same as for an integer division.

Figure 3.3: Division registers - Fixed point part of the division

For obvious synchronization reasons, two clock cycles are added at the begin and the end of
the calculus, to load and store the operands and the result. So the total number of latency clock
cycles is given by :

Latency = [2 + dividend’length + number decimals] clock cycles
(3.1)

In our test configuration for example, the dividend is a 16 bits wide integer, and the fixed
point precision is set to 6 bits. The global division latency of this operation is thus 24 clock
cycles.

3.3 Filtering

As we saw in 2.1, the peak to peak value extraction is based on a successive instant value
comparison. This means that it offers no noise immunity since no glitches are allowed. As the
currents in the ionization chamber are close to the noise limit, this issue had to be fixed. The
simplest way is to create digital filters. This section handles about the design of these filters.

One time more, the main point in the specifications is to lower the space occupied in the
FPGA. The test configuration is aimed to process data from 4 channels, which means the same
number of filter. For the final design much more input channels are foreseen. Digital filters
are usually heavy sequential blocks consumers due to the large amount of shift register. Two
main types exist, the Finite Impulse Response Filter (FIR), and the Infinite Impulse Response
one (IIR). Because of the large sampling ratio between our signals (≤1 Hz signal vs. 1 KHz
sampling rate), the FIR filters would take a huge amount of registers. Thus, the choice has
been made to implement IIR Filters. These filters usually offer good performances because
they are generated from analog equivalents, and they need less registers due to their recursive
structure. The drawbacks of designing this type of filter however are higher accuracy needed
for data representation inside the structure, a good expertise in digital signal processing theory,
and a perfect knowledge of the inner precision errors propagation to avoid the filter becoming
unstable.

Design work 9

After some investigations, it seems that the best fitting filter in regard of the input signal and
the offered hardware characteristics is a second order Butterworth equivalent. The methodology
to design such a filter is to start from the analog filter and find the best way to approach its
characteristics in the digital domain. The detailed calculation is given in Appendix B.1 (for
details on b1, b2 and C coefficients), and the key steps are given below :

1. Analog 2nd order Butterworth filter transfer function :

H(s) =
1

1 +
√

2. s
ωc

+ (s
ωc

)2
(3.2)

2. Bilinear transform :

H(z) =
z−2 + 2.z−1 + 1

b1.z−2 + b2.z−1 + C
=

Y (z)

X(z)
(3.3)

3. Recursive relation ([Z]−1 transform) :

y(n) =
x(n) + 2.x(n − 1) + x(n − 2) − b1.y(n − 1) − b2.y(n − 2)

C
(3.4)

As we said before, a strict control on the inner data paths must be ensured, to avoid over-
flows or successive errors accumulation. Simulations has thus been performed in C. This step
also had for aim to quantify the performance of our filter choice, namely cut off frequency
matters, phase shifts and gain issues. The best coefficients precision have been found with this
successive approximation, and their representation is therefore fixed to signed 16 bits words.
The shift registers containing the data have been fixed to a width of 20 bits, which is enough to
prevent overflows with the given signal dynamic.

The implementation of this filters in VHDL needs to include calculation-intensive functions
in this general purpose FPGA. The presence of 112 nine-bit DSP blocks (cascaded MAC’s)
guided thus our choice to implement powerful fixed point arithmetic in the design. A dedicated
VHDL package exists to achieve this, developed by the VHDL reflexion group (vhdl.org or
eda.org) for the next IEEE revision of VHDL. It is called fixed pkg c. This package adds a new
VHDL data types with a signed (sfixed) and an unsigned (ufixed) fixed point type, constrained
from the MSB (positive, natural part) to a negative LSB (number of bits after the comma). All
the native VHDL operators are also overloaded to enable efficient data processing with these
new data types. Furthermore, this package is completely synthesizable with any IEEE compli-
ant synthesis tools.

10 Features

4 Features

4.1 Global constants

In order to ease the use of this test functionality, several useful features are added, enabling
one to synthesize the design without knowing its content. One of these features is given by the
interface of the design with the designer. This unique interface is provided in a single file, a
package, defining all the parameters to be propagated to the different blocks of the design.

This propagation is done through generic parameters in all the functional blocks of the
design. A top entity brings all these blocs together in a global floor plan, and makes links
between them. One parameter defined in this package is, for example, the buses width of the
interconnection links, which coincide with the input and the output width of the concerned
devices. Here is a listing of the global generic parameters.

package selfTest_amplitude_phase_4_channels_package is -- global design parameters
constant running_sum_number : natural := 7; -- RS to process data on
constant channel_data_width : natural := 40; -- decoder output width
constant reference_data_width : natural := 16; -- reference data width
constant internal_data_width : natural := 16; -- width of the division input
constant number_of_symetric_channels : natural := 4; -- number of channels
constant output_number_decimals: natural := 6; -- number of decimals

The shown values of the parameters here are examples, used in the test configuration of the
design. These can be changed easily before the synthesis, to fit adequately the requirements of
the final configuration. A maximal flexibility is thus available, inside the design to fit with the
required precision, but also for the external interfaces to the BLMTC design.

4.2 Filter characteristics

In this section we will discuss about the filtering characteristics, and point out interesting
details regarding this feature. As we have seen in 3.3, the filters are designed with the help of
a new library which will be included in the new IEEE release of VHDL. This library enables
the use of a new data type for fixed point representation, needed for the filters implementation.
The same global constants method described previously is used to constrain the new data type
inside the filters. These constraints are also in the head package.

-- arithmetic representation considerations (fixed point) for the filtering
constant filter_internal_MSB : integer := 21; -- fixed point MSB for data representation
constant filter_internal_LSB : integer := -14; -- fixed point LSB for data representation
constant filter_coef_MSB : integer := 1; -- fixed point MSB for filter coefficients
constant filter_coef_LSB : integer := -18; -- fixed point LSB for filter coefficients

Additionally, filters are usually defined by their coefficients, which are calculated with the sam-
pling frequency, the right generating polynomial coefficients (Butterworth, Chebyshev...) and
the cut off frequency. Again, to ease the use of this design, an effort has been made to eclipse
the design structure, and to offer a unique, easy to use interface. Thus, the only parameter to
specify is the input frequency :

Features 11

-- frequency applied to the design (for filter cut off calculation)
constant F : real := 0.153; -- input Frequency (in Hz)

All the further parameters and coefficients are calculated from the previously given con-
stants, during the compilation phase of the synthesis operation. For example, the sampling
period is gathered from the running sum number through an array of frequencies, and the filter
cut off frequency is given by the double (one octave above) of the input frequency. The fil-
ter coefficients are thus calculated statically with the definition of a second order Butterworth
equivalent.

-- LEAVE UNTOUCHED, inherited constants:
type running_sum_table is array(0 to 11) of real;
constant RS_updates : running_sum_table := (0.00004, 0.00004, 0.00004, 0.00004,
0.00008, 0.00008, 0.00256, 0.00256, 0.08192, 0.08192, 0.65536, 0.65536);
constant Ts : real := RS_updates(running_sum_number);

-- LEAVE UNTOUCHED, filter parameters
constant wc : real := (2.0*MATH_PI) * (2.0*F); -- pulsation
constant C : real := 1.0 + ((sqrt(2.0)*2.0) / (Ts*wc)) + (4.0 / ((Ts*wc)*(Ts*wc)));
constant b1 : real := 2.0 - (8.0 / ((Ts*wc)*(Ts*wc)));-- Calculated coefficients
constant b2 : real := 1.0 - ((sqrt(2.0)*2.0) / (Ts*wc)) + (4.0 / ((Ts*wc)*(Ts*wc)));
-- normalized coefficients :
constant na1 : sfixed (filter_coef_MSB downto filter_coef_LSB) := To_sfixed (1.0/C,
filter_coef_MSB, filter_coef_LSB);
constant na2 : sfixed (filter_coef_MSB downto filter_coef_LSB) := To_sfixed (2.0/C,
filter_coef_MSB, filter_coef_LSB);
constant na3 : sfixed (filter_coef_MSB downto filter_coef_LSB) := To_sfixed (1.0/C,
filter_coef_MSB, filter_coef_LSB);
constant nb1 : sfixed (filter_coef_MSB downto filter_coef_LSB) := To_sfixed (b1/C,
filter_coef_MSB, filter_coef_LSB);
constant nb2 : sfixed (filter_coef_MSB downto filter_coef_LSB) := To_sfixed (b2/C,
filter_coef_MSB, filter_coef_LSB);

4.3 Synthesis

This self test functionality is aimed to be an add-on to the measurement electronics already
existing in the FPGA. A focus should therefore be made on the different inputs and outputs
of the device. The only interfaces to process the test are given by the running sum operations.
Thus, the input is an complete array of 12 buses (one for every sum) to be connected to the mea-
surement outputs, including the 6 enable signals. Only the relevant signals (corresponding to
the chosen sum) will be propagated through the decoder. A user definable width bus is present,
with a Ref valid signal to notify when a new value is present. This signal will be used as syn-
chronization signal for the whole functionality. A test clock is also present and a test enable to
switch the test on, typically when no beam is present is the ring.

Concerning the outputs, no definitive configuration has for the moment been specified. Nev-
ertheless, to realize the relevant tests to validate the good working of this functionality, 8 busses
giving 4 gain and 4 phase values are considered as outputs. The basic gain and phase measure-
ment functionality is thus validated. The action of decision whether or not the acquisition chain
is valid has still to be discussed. This should output a single flag per channel to send to the
global interlock system.

12 Features

To notify errors during the calculation of the gain or the phase value, an error code generator
has been included. The codes are the following :

1. ”100...0” for channel counter overflow

2. ”110...0” for reference counter overflow

3. ”111...0” for division error (division by 0 error)

Furthermore, the position of the error code in the output busses indicates the channel on
which the error occurred and for which measurement (gain or phase).

To achieve a complete measurement cycle for the 4 consecutive channels, the control unit
has to process its algorithm with a strict respect of the sequencing (data availability, control
signals, etc.). Because of this dependency of each blocks with the others, the best way to test
the good working of the functionality is to analyze this control unit sequence with a signal tap.

Figure 4.1: Calculation sequence - Control unit

An interesting point is to calculate the number of clock cycles needed to produce a couple
of gain/phase values. This value is fixed and dependent of the number of relevant digits of the
result. For the precision used in the test configuration (16 bits, 6 bits after the comma) the
number of clock cycles needed is : 2 + 2 ∗ (16 + 6) = 46 clock cycles. The first ’2’ is the
number of clock cycles to needed to store the gain and phase values in the output registers.

Conclusion 13

5 Conclusion

This technical student work took about four and a half month to be completed, with the
active help of Christos Zamantzas and Jonathan Emery and under the supervision of Bernd
Dehning. It has then been actively tested, and is completely functional in the present state, re-
garding the gain and phase values production. The magnitude comparators are not implemented
yet because the circuit for production of the local beam permit signal has still to be discussed.
The two different possibilities considered are the basic value comparison and the successive
differential comparison with a threshold.

To ensure a valuable follow up of the system designed after the time limited technical stu-
dent contract, this document has been written, in addition to a whole ”rapport de stage” (in
French). This document is available through Bernd Dehning or Jonathan Emery. These two
people are to be contacted in case of doubt or problem concerning this design.

The design of this self test functionality is focused on a delivery after 5 months. The ap-
proach of a harmonic analysis has thus been considered from the beginning, because it seemed
to be the simplest way to measure whether the acquisition chain is valid or not. If a more precise
characterization of the chain characteristics is needed, through a Fourier analysis of a pseudo
random stimulation signal for example, only a few blocks are needed to be changed. This de-
sign is made in such a modular way that it can be changed easily to receiver a large range of
measurement possibilities.

14 Conclusion

D
esign

R
T

L
view

15

A
D

esign
R

T
L

view
 SelfTest_amplitude_phase_4_channels

 Four_channel_RS_decoder

 - Only combinatory logic

 - Generic parameter to

 choose the Running Sum

 number

 - Four channels extendable

 to 8 or 16

 - Outputs the right data_valid

 signal corresponding to the

 selected Running Sum

Outputs

 Control_unit_FSM

 amplitude / phase

 start_division

 div_error

 error_code

 div_result_ready

 system_reset

 reference_update
 system_clock

 output_control

 channel_update

 counter_overflow

 selfTest_enable

channel_select

Test_clk

2

p2p_data

p2p_data

p2p_data

p2p_data

p2p_data

p2p_valid

p2p_valid

p2p_valid

p2p_valid

p2p_valid

Channel_0

Channel_1

Channel_2

Channel_3

RS_0

RS_1

RS_2

RS_3

RS_4

RS_5

RS_10

RS_7

RS_11

RS_9

RS_8

RS_6

en_1

en_2

en_3

en_4

en_5

en_6

ref_in

Ch0_amplitude

Ch0_phase

Ch1_phase

Ch2_phase

Ch3_phase

Four channel Amplitude / Phase extractor rev_6 - Beam Loss Monitoring - Erik Verhagen - Last update : 18/08/2006

Generic_RS_peek_to_peek

Generic_RS_peek_to_peek

Generic_RS_peek_to_peek

Generic_RS_peek_to_peek

Generic_RS_peek_to_peek

Test_clk

Test_en

Test_en

128

128

128

128

128

128

128

128

128

128

128

16

16

16

16

16

16

0

1

2

3

reset

reset

reset

reset

reset

 output_error_preset

Control

OUT
IN

8

reset

2

counters_off [1-0]

16

16

16

16

clock

zzzz

Ch1_amplitude

Ch2_amplitude

Ch3_amplitude

Fixed_point_divider

clock

 0

 1

 0

 1

B

A

error

ready

reset

reset

Q

16

16

16

16

Start

0

1

2

3

A / B

16

16

channel_counter

off

Reset_hold

Ref_counter

off

2

16

Four_channel_peek_to_peek

Ref_valid

Ref_p2p_valid

Channel_p2p_valid

Reset_hold

Ref_valid

Ref_valid

(NEW)

IIR Filter

IIR Filter

IIR Filter

IIR Filter

Channel_p2p_valid

Ref_p2p_valid

counters_off [0]

counters_off [1]

subtractor

16 Butterworth IIR filter

B Butterworth IIR filter

B.1 Filter design

1. Canonical Form :

H(s) =
1

1 +
√

2. s
ωc

+ (s
ωc

)2
(B.1)

2. Poles and zeros :

(a) No zeros

(b) 2 analog poles :

∆ =
2

ω2
c

− 4

ω2
c

= − 2

ω2
c

=
(

j.

√
2

ωc

)2
=⇒ P1,2 =

√

2

ωc

± j.
√

2

ωc

2
= −

√
2

2.ωc

.(1 ± j)

3. Stability :

<{p1,2} = −
√

2

2.ωc

< 0,∀ ωc =⇒ Always stable (B.2)

4. Bilinear transform :

p =
2

Ts

.
1 − z−1

1 + z−1

H(z) =
1

[

2

Ts.ωc

.1−z−1

1+z−1

]2
+

√

2

ωc

.
[

2

Ts

. 1−z−1

1+z−1

]

+ 1

=
(1 + z−1)2

[

2

Ts.ωc

.(1 − z−1)
]2

+
√

2

ωc

.
[

2

Ts

.(1 − z−1).(1 + z−1)
]

+ (1 + z−1)2

=
1 + 2.z−1 + z−2

[

2

Ts.ωc

]2
.(1 − 2.z−1 + z−2) +

[

2.
√

2

Ts.ωc

]

.(1 − z−2) + (1 + 2.z−1 + z−2)

=
z−2 + 2.z−1 + 1

b1.z−2 + b2.z−1 + C
=

Y (z)

X(z)
(B.3)

b1 =
(

2

Ts.ωc

)2 − 2.
√

2

Ts.ωc

+ 1 b2 = −
(

2.
√

2

Ts.ωc

)2
+ 2 C =

(

2

Ts.ωc

)2
+ 2.

√

2

Ts.ωc

+ 1

5. Digital equivalent ([Z]−1 transform)

X(z).[z−2 + 2.z−1 + 1] = Y (z).[b1.z
−2 + b2.z

−1 + C]

=⇒ y(n) =
x(n) + 2.x(n − 1) + x(n − 2) − b2.y(n − 1) − b1.y(n − 2)

C
(B.4)

B
utterw

orth
IIR

filter
17

B
.2

F
ilter

com
parison

result
(C

)

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1650 1700 1750 1800 1850 1900

A
m

pl
itu

de

Samples

2nd order Butterworth filter

INPUT DATA
IIR FILTER OUTPUT

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1650 1700 1750 1800 1850 1900

A
m

pl
itu

de

Samples

3rd order Butterworth filter

INPUT DATA
IIR FILTER OUTPUT

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1650 1700 1750 1800 1850 1900

A
m

pl
itu

de

Samples

2nd order Chebyshev filter

INPUT DATA
IIR FILTER OUTPUT

18
B

utterw
orth

IIR
filter

B
.3

F
ilter

sim
ulation

result
(V

H
D

L
)

FILTER INPUT

FILTER OUTPUT

0 1 sec 2 sec 3 sec

FILTER INPUT

/testbench/filter/data_in

FILTER OUTPUT

/testbench/filter/data_out

Entity:testbench Architecture:testing_testbench_filter Date: Fri Aug 18 10:45:51 AM W. Europe Standard Time 2006 Row: 1 Page: 1

B
utterw

orth
IIR

filter
19

B
.4

F
ilter

test
result

(Signaltap)

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 1200 1250 1300 1350 1400

Filter characterization, real processing during test phase

FILTER INPUT
FILTER OUTPUT

