
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN – AB DEPARTMENT

Details and specifications of the I2C
controller core (FPGA) in the combiner card

Erik Verhagen

Abstract

Achieved during technical student period May 2006 - May 2007
Under supervision of Bernd Dehning - AB–BI

The combiner card needed to compute the emergency and control signals of the
BLMTC cards is based on a powerful Altera Stratix c© FPGA. Unfortunately the
number IO’s of this chip is not sufficient to use dedicated parallel buses for each
peripheral component. An I2C bus has to be implemented. This document is giving
details and describing the specifications of the core needed to be implemented in
the FPGA to communicate with the peripherals.

Geneva, Switzerland
February 27, 2007

Contents 1

Contents

1 Introduction 3

2 Specifications 3
2.1 General . 3
2.2 Specific features . 5

2.2.1 Tristated pins . 5
2.2.2 Data rate and clock requirements . 5
2.2.3 Data format and addresses . 6

3 Implementation 7
3.1 Structure . 7
3.2 Files and Hierarchy . 7

4 Add-on interface 8
4.1 Description . 8
4.2 Features . 8

2 Contents

Specifications 3

1 Introduction

In the combiner card, the Stratix c© FPGA acts as a central processing unit. To limit the num-
ber of used I/O pins of this CPU dedicated to the peripherals (memory, I/O extension, digital
potentiometers), the chosen communication standard is I2C.

To ease the use and the implementation of this component in the future, an effort has been
made to simplify the interface and the manipulation of this block. For example, the inner global
constants are fixed to suite the Philips I2C protocol, and to control the specific components
present on the combiner card. This block is provided as is, and is usable in this form only in
the BLM combiner card. Nevertheless, it is extensible to other environments providing minor
changes in the VHDL code.

The combiner card is planned to perform several test and decision functions, based on the
input signals provided by the BLM detectors. These functions already occupy a large amount of
space in the main FPGA. For this reason, the space constraints applicable to additional blocks
the is essential. According to this, it has been decided not to use a generic out-of-the-box I2C
core, but to build a home made core instead. This one should fulfill only the basic needs of the
combiner card, gaining this way the non essential functions of the generic I2C protocol.

This document is aimed to give details of the needs of our core, describing its composition
and finally listing the features to ease the use of it. Doing so, aside the important information
regarding the implementation, it will also provide useful information in the case of transmission
problems, or strange behaviors of the combiner card.

2 Specifications

2.1 General

The I2C protocol (standing for Inter Integrated Circuit) was designed by Philips begin eight-
ies. It’s aim is to link together different chips with a simple and inexpensive communication
channel. After numerous revisions, it has become a complete serial bus, with addressable tar-
gets and fast data transmission abilities, over 2 single lines. The protocol is strictly defined in
the I2C specifications, but this is only concerning upper level characteristics, like timing and
synchronization. Data rates or voltage levels are left user definable, which leaves a great flexi-
bility of application fields and working environments.

The I2C bus is bi-directional. This means that every peripheral is able to initiate a transfer
to one of its neighbors. This typical multi-mastering feature has been disabled in our applica-
tion. The reason is that our peripherals do not need to initiate a transfer, they are always slaves.
This characteristic simplifies a lot our design, causing thus a significant gain in terms of logic
elements.

4 Specifications

The component is a monolithic I2C controller, build to perform safe communication be-
tween the FPGA and the modulation signal generation components needed by the self-test func-
tionality. These components are 8 digital 8 bit potentiometers with I2C interface. Additionally,
the front panel status LEDs are also driven by an I2C bus extension component. Thanks to a
complete IEEE compliant VHDL description, this I2C controller can be used by simply drop-
ping it anyever in the design. According to the specifications, the SDA and SCL outputs are
already tristates, enabling them to be tied directly to I/O pin of the FPGA. This is to comply
with the pulled up condition of both lines when they are inactive.

Here is the functional block view of the component :

Figure 2.1: I2C top entity

Every kind of transfers is initiated with a rising edge on the start bit. This signal is syn-
chronous, so should be applied during at least a clock cycle length. At that time the busy flag
switches to high and stay in this position during the whole transfer phase. This is useful for in-
terfacing the controller with upper level processing units. The start bit is not effective when the
busy flag is high, enabling thus the possibility to perform synchronized transfers. Additionally,
an error flag is present. This sets itself to high during one clock cycle when an error occurs
(acknowledgment timeout during transmit or receive timeout). The device falls back in IDLE
mode (usable) after such an error, and the data should be send again.

The address input is a three bit long bus, addressing the specific I2C components on the
combiner card. Details are given in the next section. The two data buses (data HI and data LO)
correspond to the data bytes sent one after the other on the bus, starting with data HI. In the
case of the I2C port extender used to control the LED displays, both bytes are used as data to
enable or disable the 16 LEDs. No read capabilities are included for this peripheral.

Concerning the digital potentiometers, the first sent byte (data HI) corresponds to the com-
mand byte, addressing one of the four specific devices inside the component. These inner 8
bits digital potentiometers are individually addressed with the 2 most significant bits inside the
command byte (see datasheet). The next sent byte (data LO) corresponds to the 8 bits data
setting the position of the sweeper. Read capabilities are included for this component, enabling

Specifications 5

auto check in case of doubt on the output amplitude of the modulation signal. For this, the r/w̄
bit must be set to high.

r/w̄ Direction
’0’ Write
’1’ Read

In Read situation, an eight bit byte is outputted on data RX and stays until the come of new
value. Synchronization can however be achieved with the drop back of the busy flag.

2.2 Specific features

2.2.1 Tristated pins

As mentioned above, the two I2C output lines (sda and SCL) are tristated. This means that
they are both to be connected to a Vcc line through a pull up resistors. Here is the schematic of
the bidirectional SDA pin logic, implemented as this inside the output of the controller :

Figure 2.2: internal SDA tristated logic

The corresponding truth tables are shown on the next figures :

Table 2.1: DATA OUT
SDA OUT SDA PIN

’0’ ’0’ (pulled down)
’1’ ’Z’ (pulled up)

Table 2.2: DATA IN
SDA OUT SDA PIN SDA IN

’1’ ’0’ (pulled down) ’0’
’1’ ’Z’ (pulled up) ’1’

2.2.2 Data rate and clock requirements

Here we will discuss the clock requirements to ensure a proper data transfer. First of all, for
synchronization reasons, the whole design needs to be feeded with the same clock signal. This

6 Specifications

unique clock is defined by the transmitting unit (framer) clock. Because the I2C bus specifica-
tion limits the data rate to 100 kbits/sec in normal mode, the clock frequency must be calculated
regarding the available clock signals. This is for efficiency purpose, to avoid counter cascades.
The drawback is that the frequency division must be calculated for each design.

To transmit one bit, the framer state machine needs 3 clock cycles. Knowing the upper
limit data rate of 100 kbits/sec, the maximum clock frequency should thus not exceed 300
KHz. For the specific BLECS combiner card, this means that a minimum of 2 bits counter
should be implemented to create a local clock tree for the I2C function. For security purpose
however, a 4-5 bit counter would be preferable. A watchdog timer has been implemented to
monitor transmission failures. In such a case, the first thing should be to decrease the clock tree
frequency by increasing the number of bits in the counter.

2.2.3 Data format and addresses

The typical I2C frame for our components contains one 8-bit address preamble, and two
data bytes (also 8-bit). Between each byte, and according to the I2C specifications, the compo-
nent is ought to acknowledge during a clock cycle provided by the controller (this component).

For the I2C digital potentiometers, the first data byte is a command byte. This command
byte is automatically calculated for each individual potentiometer. This is mandatory, because
the address present in the address byte is pointing to an I2C component. In each component are
4 individual potentiometers, which have to be addressed individually (report to datasheet). The
second data byte represents the position of the sweeper, out of 256 values. For the digital I2C
bus expander (used for the LEDs display), both data bytes are affected to outputs. No command
byte is needed, the two bytes represent the value to be displayed.

The data inputs consists in two 8-bit port, named DATA HI and DATA LO. According to
the I2C specifications and the components datasheets, the first sent byte is DATA LO. DATA HI
is sent afterward. So in the case of a frame aimed to the digital potentiometers, DATA LO will
contain the command byte.

Concerning the addresses, the use of this controller has been made as easy as possible. The
address bus is a set of 3 bits. This amount comes from an earlier development stage, in fact only
two bits are used :

Table 2.3: ADDRESSES TABLE
ADDRESS CORRESPONDING I2C COMPONENT

001 I2C bus expander (LEDs)
010 First digital potentiometer (U304)
011 Second digital potentiometer (U308)
— Nothing (available)

Implementation 7

3 Implementation

3.1 Structure

The I2C top entity (controller) is in fact a combination of a low level framer (only able to
transmit and receive frames) and a higher level control unit (arbitration). Both communicate
with a dedicated data bus, made of a busy flag, an error flag and a start strobe.

Figure 3.1: Detailed I2C top entity structure

The control unit is of course a finite state machine, described in genuine VHDL. Please re-
port to the source code for the details on the sequence, and the possibilities. Both transmitting
and receiving are implemented.

The framer is a bit more complex. This entity is described in structural VHDL. It brings
together a shift register associated to a counter (to load or send 8 bits on SDA), tristates, and a
three 8 bit register bank to freeze the data bytes and address at the beginning of a transmit cycle.

3.2 Files and Hierarchy

At the framer side, four files are involved to describe the entity :

• reg 8.vhd: 8-bit register bank (8 D flip-flops with enable)
• shift.vhd: 8-bit long shift register, bidirectional with enable
• upcnt3.vhd: 3-bit counter with enable to ensure the good frame length
• frame tx rx.vhd: Entity and structural architecture wiring the three above mentioned com-

ponents together.

The three first entities are generic RTL descriptions of common components, and can be
reused for other designs.

Concerning the controller, a single file called i2c controller.vhd is describing the Finite State
Machine. Several generic parameters (constants) are present, and can be modified in relevant
cases. These parameters are base ans physical addresses. This can be useful if components from
another supplier are planned to be used.

8 Add-on interface

At the highest level, the framer and the controller are wired together in a file called i2c top entity.vhd.
Nothing special in this file except that this would be the entity to synthesize at last and from
which a graphical schematics will be generated in some evaluated synthesis tools (like Altera
Quartus c©).

4 Add-on interface

4.1 Description

To add a step in decreasing the complexity of implementation of this I2C block, an inter-
face component is designed. This component is aimed to initiate a transfer every time a change
occurs on the inputs. This is especially convenient for the LEDs display.

This interface will be placed above the I2C block. This place is also ideal to add simplicity
to the data transfers. Every component (I2C bus expander and all the potentiometers) will have
a distinct input, and this block calculates the addresses and formats the data to be send, accord-
ing to the specifications detailed in the previous chapter.

Here is a block view of the component :

Figure 4.1: I2C add-on interface

4.2 Features

This circuit is made of 10 home made change detect blocks for each input (LEDs and Po-
tentiometers). These are simply made of 8 bit register banks with exclusive Or’s between input
and output. This combinatory signal gives a strobe when the input data changed.

This 10-bit wide bus is wired to a change detect register (10 clocked RS flip-flops), and
is scanned sequentially in a circular way by a finite state machine. If a flag appears to be set

Add-on interface 9

(change occurred on the input), the FSM generate the correct I2C address (first byte of the
frame) and the correct first data byte (command byte of the right potentiometer, or low data
byte for LEDs). It the MUXes then the right data on the bus between this interface and the I2C
controller for sending.

Figure 4.2: Structure of the I2C add-on interface

