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Motivation for the LHC collimation project

Local losses in cold magnets 
< 10-7-10-9 of beam intensity!

Cleaning efficiency: 
≈1000 times better 

than the state-of-the-art!

We need better simulation tools!
➙ Benchmark with SPS data!

LHC beams, 7 TeV:
2 x 360 MJ stored energy!

High damage potential

Quench SC magnets

Number of bunches: 2808
Bunch population: 1.1e11
Bunch spacing: 25 ns

Top energy:

Proton energy: 7 TeV
Transv. beam size: 0.2 mm
Bunch length: 8.4 cm
Stored beam energy: 350 MJ

Injection:

Proton energy: 450 GeV
Transv. Beam size: 1 mm
Bunch length: 18.6 cm

LHC nominal
Parameters:

At less than 1%less than 1% of nominal intensity LHC enters 
new territorynew territory.

Collimators must survivesurvive expected beam loss…

Collimators will be highly activatedactivated!

Compare…Compare…

Understanding beam losses is crucial for the LHC!

R. Assmann
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Overview of my talk
• Tools for loss map studies

• SPS simulations

• Measurement of loss maps 

• Comparison with simulations

• Conclusions / outlook
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LHC loss map simulations
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Accurate tracking of halo particles
6D dynamics, chromatic effects, δp/p, 
high order field errors, ... 

SixTrack

Scattering routine
Track protons inside collimator materials K2

Detailed collimator geometry
Implement all collimators and protection devices, 
treat any azimuthal angle, tilt/flatness errors

Detailed aperture model
Precisely find the locations of losses BeamLossPattern

IR7

Trajectory of 
a halo particle



S. Redaelli, APC meeting 5

• Scattering routine called within tracking at each 
collimator

• If particle touches jaw, calculate absorption, 
offsets, scattering angles and energy error

• Trajectories of halo particles saved for off-line 
aperture analysis (∆s < 10 cm)

R.Assmann at al
 LHC-Proj-Rep 639 (2003)

TOOLS FOR PREDICTING CLEANING EFFICIENCY IN THE LHC

R. Aßmann, M. Brugger, M. Hayes, J.B. Jeanneret, F. Schmidt, CERN, Geneva, Switzerland

I. Baichev, IHEP, Protvino, Russia

D. Kaltchev, TRIUMF, Canada

Abstract

The computer codes Sixtrack and Dimad have been

upgraded to include realistic models of proton scattering

in collimator jaws, mechanical aperture restrictions, and

time-dependent fields. These new tools complement long-

existing simplified linear tracking programs used up to now

for tracking with collimators. Scattering routines from

STRUCT and K2 have been compared with one another

and the results have been cross-checked to the FLUKA

Monte Carlo package. A systematic error is assigned to

the predictions of cleaning efficiency. Now, predictions

of the cleaning efficiency are possible with a full LHC

model, including chromatic effects, linear and nonlinear er-

rors, beam-beam kicks and associated diffusion, and time-

dependent fields. The beam loss can be predicted around

the ring, both for regular and irregular beam losses. Exam-

ples are presented.

INTRODUCTION

The collimation system of the LHC [1] requires an excel-

lent cleaning efficiency in order to avoid quenches of the

super-conducting magnets. Various numerical tools used

for prediction of cleaning efficiency were compared. The

programs include generation of a primary beam halo, scat-

tering of high energy protons through material and tracking

of beam halos in the storage ring. The degree of agreement

between different codes is discussed. Differences are used

to assess possible systematic errors.

SCATTERING CODES

The physics of proton scattering in the material of col-

limator jaws has been implemented in various computer

codes. The scattering routines track the protons through

some length of a given material having them interacting

with the proper cross-sections. The protons receive trans-

verse kicks ∆θx, ∆θy and offsets ∆x, ∆y and some mo-
mentum loss δ = ∆p/p0. Note that a full shower calcula-

tion is not required for predicting the cleaning of ”primary”

beam protons.

The primary protons in the LHC have energies from

450 GeV at injection to 7 TeV at top. The scattering rou-

tines must correctly describe the interactions over the full

range of energies, allow for different jaw materials, and in-

clude the correct jaw geometry, as protons impact at very

close distance from the edge of the jaw.

Three different scattering routines were compared:

1. K2 was developed in the 1990’s by Jeanneret and

Trenkler for studies of LHC collimation [2].

2. STRUCT was developed in the 1980’s by Baichev

et al, amongst others for studies of lHC and SSC collima-

tion [3].

3. FLUKA is a general purpose scattering and showering

code [4].
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Figure 1: Scattering probabilities for one 7 TeV proton im-

pacting on a 0.5 m long Cu jaw. Change in position (top),

angle (middle) and energy (bottom).

A test case was defined for the three routines: A 7 TeV

pencil beam with zero angle (y′ = 0) impacting y = 1µm
from the edge of a 0.5 m long vertical collimator, made of

Cu. The changes in particles offsets, angles, and momen-

tum were recorded. The comparison of the different scat-
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pacting on a 0.5 m long Cu jaw. Change in position (top),

angle (middle) and energy (bottom).

A test case was defined for the three routines: A 7 TeV

pencil beam with zero angle (y′ = 0) impacting y = 1µm
from the edge of a 0.5 m long vertical collimator, made of

Cu. The changes in particles offsets, angles, and momen-

tum were recorded. The comparison of the different scat-
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Example of LHC loss patterns

Cross-check the validity of these results with SPS measurements!
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Example of LHC loss patterns

Cross-check the validity of these results with SPS measurements!
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• Tools for loss map studies

• SPS simulations
• Measurement of loss maps 

• Comparison with simulations

• Conclusions / outlook

7
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SPS layout for the 
2004 collimator test

to be implemented in simulations 

A horizontal LHC collimator 
prototype (full mechanical 

functionalities) installed in SS5 
for tests with beam in 2004!
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SPS optics and aperture model
Prototype LHC collimatorMain beam parameters

βx = 24.9m 
            ➘ σx ≈ 0.7mm

βy = 89.9m 
            ➘ σy ≈ 1.3mm

En = 270 GeV / c
ε ≈ 1-3 µm
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Example of simulated SPS loss pattern - I
Simulations include time-dependent jaw movements (new feature)
 ➘  Single or both jaws can be moved at their real speed
 ➘  Long tracking runs ~ 20000 turns to simulate the full sweep across the beam

Model accurate to the < 1e-4 level

Can the BLM’s measure 
this wide dynamic range?

Csps ≈ 6.9 km

Nu
m

be
r o

f l
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t p
ar

tic
le
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SPS simulations - example of loss maps - II
Np
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SPS simulations - example of loss maps - II

Dynamic range of BLM’s ?

Np
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SPS simulations - example of loss maps - II

Dynamic range of BLM’s ?
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• Tools for loss map studies

• SPS simulations

• Measurement of loss maps 
• Comparison with simulations

• Conclusions / outlook

13
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Remarks
• No dedicated measurements on-line: all the analysis is done off-line
• Dig-out the useful information among ~2500-3000 data sets!
• Missing knowledge of energy deposited in the BLM per lost proton

Predict location of losses but not relative heights of the peaks!

14

SPS loss pattern measurements

• One ionization chamber per quadrupole 
→ Total of 36x6=216 BLM’s

• QD (smaller σx) have one horizontal 
monitor and vice-versa

• Losses integrated over 1 super-cycle:
1 acquisition every ~ 25 s

         Synchronize data with jaw movements!

☹

Ionization chamber
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Data analysis / reduction
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Losses induced by the collimator can 
be seen by taking the difference 
between consecutive super-cycles

Typical loss patterns from collimators 
are independent of optics, local 
bottlenecks, etc...

Collimator OUT

Collimator moving IN

Typical collimator 
induced loss!
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• Tools for loss map studies

• SPS simulations

• Measurement of loss maps 
• Comparison with simulations
• Conclusions / outlook

16
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Comparison - overall loss pattern
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The comparison showed that the correct settings of 
TPSG+MSE were missing in first simulation runs!
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Peaks at the TIDP / TIDV
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Simulations predict precisely the  
loss locations several km 
downstream of the collimator!    
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The peak is downstream 
of the BLM location!

Difference understood if details 
of BLM mounting are taken into account!

We can nicely simulate losses 
but, of course, cannot measure 

without BLM’s!
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Simulations

Beam

↓collimator
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Details of another loss location:
peaks 1 km downstream of the collimator
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We look at small loss peaks in regions with no collimators:
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Simulations agree qualitatively with measurements 
also at locations without collimators!

~1/1000 of 
max peak

~1/5000



S. Redaelli, APC meeting 23

Conclusions 
• Beam loss simulations set-up to predict measured SPS loss patterns

Results from 2004 collimator test with beam are used

• Simulation benchmark was challenging but successful at the end!
No dedicated measurement sets

Missing information of deposited energy on BLM

• The results of this work confirm the power of simulations! 
Good agreement for the prediction of loss locations 

Could identify from simulations minor setting errors of the model

Small differences were understood: BLM location vs loss location 

We are can trust our 
simulation package for the LHC studies!
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Outlook 
A collimator test with beam at the SPS is foreseen for 2006. 

What could we improve?

• Dedicated data taking session during the test.

• Faster BLM acquisition would help carrying out detailed studies

➙ Can we have turn-by-turn measurements?

• Measurements / simulations with additional scrapers?

➙ Understanding of hardware is required

• More advanced ideas: Use strong non-linear elements?

➙ Further cross-check of tracking for the LHC

• Setup non-linear bumps (with R. Tomas) 

➙ Use the extraction sextupoles? Are there other available?


