

Fachhochschul-Diplomstudiengänge Technik

Realisation of a fast data storage and
transfer system using a FPGA and an

USB interface.

 Juni 2005 Roman LEITNER
___________________________ ___________________________
 Datum Verfasser

Fachhochschul-Diplomstudiengänge Technik

Titel der Diplomarbeit:

Diplomarbeit

Eingereicht von: Roman Leitner

Vertiefung: Mechatronik/Mikrosystemtechnik

am Fachhochschul-Diplomstudiengang

Präzisions-, System- und Informationstechnik

Begutachter: Prof. (FH) DI Helmut Frais-Kölbl

Wiener Neustadt: Juni 2005

__
Ich versichere,

dass ich die Diplomarbeit selbständig verfasst, andere als die angegebenen Quellen
und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfe bedient
habe und diese Diplomarbeit bisher weder im In- und Ausland in irgendeiner Form
als Prüfungsarbeit vorgelegt habe.

_________________________________ _________________________

 Datum Unterschrift

Realisation of a fast data storage and
transfer system using a FPGA and an USB interface.

Fachhochschul-Diplomstudiengänge Technik

Kurzzusammenfassung:

Das Beam Loss Monitoring-System des LHCs ist ein komplexes Mess- und
Datenaufnahmesystem. Die Aufgabe dieses Systems ist die Stabilität des
Teilchenstrahles zu überwachen und ihn bei zu grossen Verlusten abschalten
zu lassen. Ionisationskammern ausserhalb der Magnete messen die Teilchenverluste
und wandeln diese in ein Stromsignal um. Dieses Signal wird bereits
im Tunnel in ein Frequenzsignal umgewandelt und in einem FPGA für den
Transport zur Oberfläche über Glasfaserkabel vorbereitet. An der Oberfläche
wird die Übertragung auf Fehler überprüft.
Um die Daten zu analysieren und online den Zustand des Teilchenstrahles
zu überwachen, müssen diese Daten zu einem Computer übertragen werden.
Diese Diplomarbeit befasst sich mit der Übertragung, Speicherung
und Darstellung der Daten auf einem Computer. Die Daten werden mit
Hilfe einem USB 2.0 Modul übertragen, mittels LabVIEW gespeichert und bei
Bedarf angezeigt.

Schlagworte: Beam Loss Monitor, FPGA, USB, FIFO, LabVIEW

Abstract:

The Beam Loss Monitoring-system of the LHC is a complex measurement- and
acquisition-system. The task of this system is to monitor the particle-beam and
to request a dump in case of too big losses. Ionisation-chambers outside the
magnets measure the losses of the beam and change this signal to a current
signal. This signal will be converted to a frequency signal and prepared for the
transmission to the surface inside a FPGA. On the surface the transmission is
checked for errors.
To analyse and observe the status of the particle-beam, this data must be
transferred to a computer. This thesis covers the transmission, storage and
visualisation of the data on the computer. The data are transmitted by an USB 2.0
module. The storage and visualisation is made in LabVIEW.

Keywords: Beam Loss Monitor, FPGA, USB, FIFO, LabVIEW

Acknowledgements

I would like to thank a couple of people I meet before and during my stay at

CERN.

First of all I want thank my supervisor at CERN Bernd Dehning. Thank you

for giving me the possibility to spend my practical training there. You had always

an open ear for my questions and problems. Thank you for your patience during

the correction of my thesis.

I also would like to thank my supervisor at the Fachhochschule Wr.Neustadt

Helmut Frais-Kölbl for his support and his help .

A huge ’Thank you!’ to the whole BLM section. It was a pleasure to spend

some time with all of you. Virginia Prieto, Laurette Ponce, Barbara Holzer,

Gianfranco Ferioli, Jan Koopman, Ewald Effinger, Gianluca Guaglio, Michael

Hodgson Claudine Chery, Raymond Tissier and of course Markus Stockner.

Especially thanks to Christos Zamantzas and Jonathan Emery who helped me

to finish my project and always had a good clue when something did not work.

Thanks for the precisely timed coffee breaks, finally i like drinking coffee.

I want to thank the Austrians at CERN for the funny conversations during

the lunch breaks and after the working hours. Günter, Martin, Roman, Gerd,

Markus(again), Florian, Thomas, Julia, Fadmar, Runar(You are one of us!) and

all the others.

Thanks to Wolfgang Wöber and Wolfgang Haindl of the FH who offered me a

nice job during my time there. I learned there a lot and i will never forget the

barbecues. Thanks to Thomas, Helmut, Werner(!) and of course to Rene and

Robert.

To all my colleagues at the FH Wr.Neustadt: I am very happy that i meet

you. We had a lot of fun in the lectures and even more afterwards. Thanks to

Elvis, Döner, chriscross, Werner, Wogri, Nic, Weissi, Geri, Leini, Raeff, Thomas,

Robert, Roman, Michl, Flo, Lebi, everyone in the dormitory and everyone i forgot

here.

To all my other friends from Deutschkreutz and from the HTL: Thank you

for your support all the time and for your strong friendship. Pam, Pu, Karin,

Blonda, Achi, Nico, Elli, the twins, die Römer, Heinzi, Andl, Hans J., Jürgen,

Mario, the ”Good morning” - email distribution list and everybody else. Thank

you for giving me something familiar every day.

I want to thank my brother and my mother for being there for me. We are a

family and there is nothing we cannot manage.

In the end i want to thank a very special person and i want to dedicate this

thesis to her. Kerstin, I know it was a bigger distance than usual, but we both

made it as best as we could. Thank you for correcting the same mistake again

and again. Thank you for your support.

Contents

1. Introduction 1
1.1. About CERN . 1
1.2. The LHC . 1
1.3. The Beam Loss Monitoring System 3

1.3.1. Ionisation chambers . 6
1.3.2. The readout-electronic for the Beam Loss Monitors 7
1.3.3. Transmitting the data from the tunnel to the surface . . . 8

2. Overview of the system 11
2.1. The data of the BLM-system . 11

2.1.1. The full data frame . 11
2.1.2. The reduced data frame 12
2.1.3. Conclusion: . 14

2.2. The system on the FPGA . 14
2.3. Connection to the PC . 14
2.4. Processing of the data on the computer 16

3. The FPGA-System 17
3.1. Version 1 : A dual clock memory and a FIFO 18

3.1.1. Changing the clock system 18
3.1.2. Storage of the data . 21

3.2. Version 2 : A FIFO can handle it all 22
3.3. Size of the FPGA-FIFO . 23
3.4. Fill level indication . 23
3.5. How long does it take to fill the FIFO? 24
3.6. Phase locked loop . 25
3.7. Button debounce . 26
3.8. Switches and buttons in the design 29
3.9. Led indicators . 29
3.10. Conclusion: . 30

i

4. The USB Interface 32
4.1. Settings of the QUD . 33

4.1.1. Width of the HSPP . 34
4.1.2. HSPP FIFO settings . 34

4.2. Connection between the QuickUSB and the FPGA 35

5. The readout program 37
5.1. Why use LabVIEW? . 37
5.2. Use the C-Library in LabVIEW 38
5.3. Structure of the LabVIEW program 41

5.3.1. Configure the QUD in LabVIEW 43
5.3.2. Read the data from the QUD 43
5.3.3. Realisation of the handshake 46
5.3.4. The readout procedure . 46
5.3.5. The data-rate of the system 47

5.4. Explanation of the Labview Code 47

6. Test measurements 52
6.1. Test of the version : LOW DATA-RATE 52

6.1.1. Measurement setup . 52
6.1.2. Results . 53
6.1.3. Conclusion . 53

6.2. Test of the version : HIGH DATA-RATE 54
6.2.1. Measurement setup . 54
6.2.2. High data rate transmission results : with the LabVIEW

display . 57
6.2.3. High data rate transmission results : without the Lab-

VIEW display . 57
6.2.4. Interpretation of the results 59

7. Conclusions 60
7.1. FPGA . 60
7.2. QuickUSB . 60
7.3. LabVIEW . 60

8. Abbreviations, list of figures and list of tables 62

Bibliography 66

9. Appendix 69

ii

A. VHDL-Code and Quartus-Projectfiles 70
A.1. Project Package . 70
A.2. Testmodule . 70
A.3. write data . 71
A.4. read data . 73
A.5. Quartus Project version 1 : dual-clock Memory and FIFO 77
A.6. Quartus Project version 2 : dual-clock FIFO 78
A.7. Schematic : PLL . 79
A.8. Final structur of Quartus program(assembled by Christos Za-

mantzas) . 80

B. QuickUSB 82

C. LabVIEW 88
C.1. Functions in Labview . 93

iii

1. Introduction

1.1. About CERN

CERN1 is one of the largest and most influential research institutes in the world.

The organization was founded in 1954 to explore what matter is made of and what

forces hold it together. Today, CERN has over 120 different research projects.

About 2500 staff members, 420 young students and fellows supported by the

organization and 5000 visiting physicists, engineers and other specialists out of

40 countries and 371 scientific institutions try to figure out what is going on

between the elementary particles. The instruments to investigate these particles

are accelerators. There are several of them at CERN (Fig.1.1).

New particles are created by colliding in an accelerator prepared particles. The

characteristics of these short living particles are determined in detectors at the

interaction points (Fig.1.2).

1.2. The LHC

The LHC2 is the largest project at CERN and when it is finished it will be the

most energetic accelerator in the world which brings two proton beams or two

ion beams into head-on collisions. With the ion collisions scientists will be able

to recreate the conditions prevailing at the ”Big Bang”. The first beam will be

injected into the LHC in 2007.

The LHC is a cyclic accelerator with a circumference of 27 km and a diameter of

8.6 km. The location of this machine is in the area next to Geneva approximately

100 m below the surface. The LHC-pipe consists of two tubes in which particles

will be accelerated in opposite direction.

1le Conseil Europ´een pour Recherche Nucl´eaire
2Large Hadron Collider

1

1.2. THE LHC

Figure 1.1.: Accelerators at CERN [2]

At 4 experimental areas3 (Atlas, Alice, CMS, TOTEM and LHC-b) the

collisions of the two beams are created with an energy of 14 TeV. Each experiment

has its own specialised features and functions. One of the targets of the LHC is

to find the particle which is responsible for the mass. The Standart Model says,

that each one of the 4 elementary forces4 is carried by a particle. It is interesting

to note that the first studied force, the gravity, is still mysteries. The existence

of all other forces and their sources is already prooved. The carrier of the these

3also called interaction points
4gravity , electromagnetic , strong and weak force.

2

1.3. THE BEAM LOSS MONITORING SYSTEM

forces are the photon, the gluon and the W and Z boson.

To generalise the Standart Model an additional particle was introduced, named

after the introducer Higgs : the Higgs-particle. The existence of this particle is

not verified yet, so nobody knows if the Standart Model is correct. To verify the

theoretical construct and the existence of this particle, the LHC is build. With

the help of this powerful cyclic accelerator it is possible to scan a wide range of

beam-energy up to 7 TeV. The Higgs-Boson mass is estimated between 100 GeV

and 200 GeV5. When the particle is found, a new linear accelerator(LINAC) for

this special energy level will be build at CERN to examine the characteristics of

the particle.

Figure 1.2.: Aerial view at the LHC Accelerator with the experiments : ATLAS,
CMS,TOTEM, LHC-b and ALICE [2]

1.3. The Beam Loss Monitoring System

Particle accelerators have particle losses like every other machine6. These

particles deposit partially their energy in the super-conducting coils. The result is

5Using Einstein’s famous formula E = mc2 the mass of a particle is proportional to its energy.
6Losses : Particles are leaving their trajectory and hit the superconducting magnets.

3

1.3. THE BEAM LOSS MONITORING SYSTEM

a local heating of the superconducting coils. When many particles deposit their

energy in the coils of the magnets, the temperature of the magnets will raise.

(fig.1.3)

The coils of the LHC magnets become superconducting at about 4.5 K . By

cooling the superconducting magnets down to 1.8 K, the fluid helium becomes

super-fluid. This means that the helium has almost no viscosity and provides a

greater heat transfer capacity.

When the temperature raises the resistance of the copper coils will increase.

Because a current through higher resistance causes a bigger loss of power in the

conducting material, the coils will heat up until the magnet fill fall into normal

conducting mode. This event is called a quench.

P ⇑ when R ↑, because of P = I2 ∗R (1.1)

At this time the magnet field is not strong enough to bend the particle beam

and the beam will fly into the coils of the magnets. When the beam hit the helium

it will expand immediately like an explosion and might damage the magnet.

Figure 1.3.: Schematic view of the loss of particles from the circulating beam.
When particles hit the wall of the vaccumtube, they deposit their
energy in the metal, which causes a local heat spot.

If a magnet is damaged or even destroyed by a quench, it must be dismantled

4

1.3. THE BEAM LOSS MONITORING SYSTEM

and repaired. This causes high costs and long repair times.

To avoid a quench the loss of particles must be observed. Before a quench

occurs, the particle beam needs to be dumped. To dump the beam means to kick

the beam out of the accelerator ring into a huge block of solid carbon to protect

the magnets from damage.

There are many so called machine protection systems foreseen at the LHC. One

of them is the Beam Loss Monitoring System. Its task is to protect all magnets

of the LHC from damage due to lost particles. To have a seamless monitoring of

the beam, the BLM-system can observes losses at 3500 locations along the whole

LHC ring.

Figure 1.4.: Quench-levels of the LHC [3]

To avoid a quench it is necessary to know what is the amount of lost particles,

until the magnet will quench. Using the Figure1.4 it is possible to define the

quench-levels of the LHC. These curves are equal to the cooling capacity of the

LHC. The losses of the LHC must be below the curves.

To protect the machine from a Quench it is important to record all losses over a

long period, because also a low loss can cause a Quench if it has a long duration.

For short losses (1) the heat capacity of the cable is the relevant quantity. If

the duration of the loss takes longer (2) the heat is delivered from the cable to

5

1.3. THE BEAM LOSS MONITORING SYSTEM

the cooling element, fluid helium. In the third area (3) all the heat capacity of

the HE is filled up. For long losses (4) the helium transports the heat away.

1.3.1. Ionisation chambers

The ionisation chambers are the detectors for the BLM. When a particle hits

the coils of the magnet, it will deposit its energy in the coils and also generate

secondary particles . These secondary shower particles ionising the detector gas

in the ionisation chamber . Due to the high supply voltage of the chamber both

charges will drift towards opposite electrodes.

There are three prototypes of chambers.

Type A: Parallel Plate Chamber This design consists of 30 parallel aluminium

plates (cathodes and anodes). The distance between the plates is 5 mm.

Type B: 2-Coaxial Chamber The cathode of this type is of coaxial shape with

a diameter of 1 cm. The coaxial anode has a diameter of 3.8 cm and is

concentric to the cathode.

Type C: 3-Coaxial Chamber This kind of chamber has an additional concentric

anode inside the cathode.

All types of ionisations chambers are mounted inside a stainless steel tube,

which is filled with gas (either N2 or Ar-CO2) at a pressure of 1.1 bar.

Type A is already in use as BLMs in the SPS and other accelerators at CERN.

Also in the LHC parallel chambers will be used, because the signal development

is faster, the E-field is constant between the plates and the ionisable volume is

better defined.

About 150 electron ion pairs are created per cm path. The traversing charged

particle rate is in such a way converted into an electrical current. The dynamic

range of the BLMs is between 1 pA and 1 mA.

The chambers are located at the quadrupole magnets because the beam is

reaching the largest size at this location and is formed down by these magnets.

The probability to lose at this location particles is highest. The impact of beam

protons on the superconducting magnets has been simulated to find out how

where and how many BLMs are needed. To detect the beam losses outside of the

cryostat three ionisation chambers per beam are necessary.

6

1.3. THE BEAM LOSS MONITORING SYSTEM

Figure 1.5.: Ionisation chambers: Type A, Parallel Plate Chamber [2]

Figure 1.6.: Position of the ionisation chambers next to the magnets.

1.3.2. The readout-electronic for the Beam Loss Monitors

To convert the current signal from the ionisation chamber to a digital signal, a

CFC7 converter is used [5]. This Converter consists of an integrator, a threshold

comparator and an current source. When the ionisation chamber delivers a

current, it will be stored in the integrator as a voltage. If the current is constant,

the voltage will fall linear because of the negative integration of the Operational

Amplifier. When the voltage reaches a certain value, the threshold comparator

will force the current source to empty the integrator using an negative current.

This part of the BLM-System was developed during a previous thesis[5] by Werner

Friesenbichler.

The output of the CFC is a sawtooth-shaped voltage signal. The amount

of particles which flys through the ionisation-chamber is proportional to the

output frequency of the converter. To measure this frequency the CFC pulses

7current to frequency

7

1.3. THE BEAM LOSS MONITORING SYSTEM

are counted. The higher the amount of particles, the higher the counter value.

Because the counter can only count full pulses the system has a certain error

up to almost one count. To prevent this error and to increase the resolution of

the system the value of the output-voltage of the CFC will also measured by an

ADC in the same moment when the CFC counts are read.

1.3.3. Transmitting the data from the tunnel to the surface

To transmit the data of each chamber separately a huge amount of equipment

would be necessary. The BLM uses a so called tunnel card to digitalises and to

multiplex the data of up to 8 ionisation chambers into one data package (frame).

In the FPGA the counted CFC pulses and the ADC data of the 8 chambers

becomes multiplexed to one frame of data. To assign the data later to an unique

position in the LHC tunnel, each data-frame also has some additional bits for

these informations. The whole data-frame is shown in figure 1.7. It consists of

16 startbits, the card and the frame identify number, 64 bit of counter data (8 x

8 bit), 96 bits of ADC data (8 x 12 bit), 16 status bits and the CRC data.

Figure 1.7.: The full data frame of the BLM-system. [1]

Then the data will be transmitted twice via optical link to the surface using an

optical link, the GOH-board(fig.1.8). This board consists of the GOL8 and a laser

diode. The GOL is a radiation tolerant high-speed transmitter (800 Mbps) with

a 16 bit-wide input and a CRC checksum generation. This ASIC was developed

at the microelectronics group at CERN.

Because of redundancy reasons the data is transmitted over two separated

fibres. On the mezzanine-card(fig.1.9) both optical signals are converted to an

electrical signal and passed to the FPGA-board. To check transmission errors the

CRC9 values were calculated in the FPGA and compared with the CRC-value

from the tunnel.

8Gigabit optical link
9Cyclic redundancy check

8

1.3. THE BEAM LOSS MONITORING SYSTEM

Figure 1.8.: The GOH board, containing the GOL and a Laser diode. [2]

Figure 1.9.: The mezzanine card.

If there was an transmission error on one fibre the data of the other fibre is

chosen for further treatment (table 1.1). If both are wrong the beam must be

dumped because the monitoring system is not working properly.

9

1.3. THE BEAM LOSS MONITORING SYSTEM

Table 1.1.: Signal selection- and Dump-table. 1 = Correct, 0 = Error. [1]
CRC32 check Comparison Output Remarks

of 4Byte
A B CRCs
0 0 0 Dump Both signals have error
0 0 1 Dump S/W trigger (CRCgenerate or check wrong)
0 1 0 Signal B S/W trigger (error at CRC detected)
0 1 1 Signal B S/W trigger (error at data part)
1 0 0 Signal A S/W trigger (error at CRC detected)
1 0 1 Signal A S/W trigger (error at data part)
1 1 0 Dump S/W trigger (one of the counters has error)
1 1 1 Signal A By default (both signals are correct)

10

2. Overview of the system

An abstract overview of the whole BLM testsystem is shown in figure 2.1.

The data from up to eight ionisation chambers are collected by the tunnel card

and converted to an optical signal using the GOH-board. On the surface the data

is converted back to an electrical signal on the mezzanine card. In the FPGA the

transmission is checked for errors.(CRC)

The task of this project is to receive the data after the CRC-check and forward

it to a PC for the storage.

Figure 2.1.: Overview of the test system.

2.1. The data of the BLM-system

There are two versions of this project depending on the tests. In one version the

whole data from the BeamLossMonitors will be transferred, in the other the data

will be reduced on the chip, and only average values will be transferred.

2.1.1. The full data frame

The raw data consists of 256 bits which are delivered every 40 µsec on a 16 bit

wide bus. So the data is a frame of 16 x 16 bit with an update rate of 40 µsec.

The calculated1 data-rate is:

1Conversion: 1Mbit = 1000kbit = 1000000kbit

11

2.1. THE DATA OF THE BLM-SYSTEM

dataratefull = amount of data
time−period

= 256bit
40µsec

= 6.4Mbit/sec

2.1.2. The reduced data frame

For most operations it is not necessary to transfer the raw data of the system.

When reducing the amount of data it is important that no necessary information

is lost. To reduce the data on the FPGA running sums of the data are calculated.

The term ’Running sum’ means that all counter values are summed up for a

defined time. Every time when the running sum is refreshed, the actually value

will be added and the oldest value will be subtracted from the running sum.

Figure 2.2.: Running sums: When the running sum is refreshed, it the newest
counter value(green) will be added and the oldest (red) subtracted.

In table 2.1.2 the different lengths of the running sums are displayed. The first

running sum will sum-up the counter values of the last 40 µs, the second running

sum will do the same for 80 µs, and so on. The last running sum will sum-up the

data for about 84 seconds.

To observe the limits of the system (fig.2.3, green and blue lines), the running

sums are used to fit the curve of the allowed counts of the system.(fig.2.3, green

and blue dots)

The size of this reduced data is 256 words2. These data, consisting of the

maximum values of the running sums, has a much lower update rate than the

raw data from the BLMs.

21 word = 16 bit

12

2.1. THE DATA OF THE BLM-SYSTEM

Table 2.1.: Table of length of the running sums.
sum range refreshing

[ms] [ms]
1 0.04 0.04
2 0.08 0.04
3 0.32 0.04
4 0.64 0.04
5 2.56 0.08
6 10.24 0.08
7 81.92 2.56
8 327.68 2.56
9 1310.72 81.92

10 5242.88 81.92
11 20971.52 1310.72
12 83886.08 1310.72

Arc counts sum to dump

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

loss duration [ms]

co
un

ts
 s

um

Figure 2.3.: Counts to dump : The runnings sums are used to fit the curve. [1]

Approximately all 0.8 seconds a new data-frame is send to the computer-

interface. This timing is generate by a 25 bit counter which is counting with

13

2.2. THE SYSTEM ON THE FPGA

40 MHz on the FPGA and is a chosen time constant. (225

40MHZ
= 0.8388sec)

The calculated data-rate is:

dataratereduced = amount of data
time−period

= 256words
0.8388sec

= 305.17578words
sec

2.1.3. Conclusion:

The system on the FPGA should be able to handle both versions (full data-frame

and reduced data). If the full data-frame is used the system has to transmit the

data before the memory on the FPGA is full and data will be lost. In case of

the reduced data-frame the system stores the data on the FPGA until a defined

amount can be send to the computer.

2.2. The system on the FPGA

The FPGA receives the data from the mezzanine-card and transmits it to the

computer. Because of the fact that every transfer protocol3 has its own special

header data which are needed for the transfer, the whole transmitted data will

be bigger than the data from the BLM-system.

Whether the BLM-data is small or big, this header will be transferred on

every time a transmission is started. When every short data-packet arriving is

transmitted to the computer, the interface will be very busy because it has to

start a transmission very often.

A better solution is to accumulate the data on the FPGA and send it when

a bigger amount of data is on the FPGA. This will reduce the traffic and also

increase the possible datarate of the system.

2.3. Connection to the PC

For the transfer to the computer a standard interface should be chosen, which is

able to handle the amount of data provided by the Beam-Loss-Monitors.

RS232 : The serial interface is an older interface. It is easy to build up a

communication using the RS232, but the data rate is to low for this project.

3USB,Firewire,Ethernet,...

14

2.3. CONNECTION TO THE PC

Ethernet : Ethernet is a common interface to link computers together. It can

handle big amounts of data. The possible datarate depends on the used

protocol (TCP/IP, IPX, . . .).

Firewire : Firewire is able to transfer bigger amounts of data in a short time

(up to 800 Mbps). In this bus system clients can talk to each other without

the host. It is used to transfer data from e.g. a digital video cameras to

the computer.

USB : This interface can transfer data in full-speed mode with 480 Mbps. Every

communication on the bus has to be transmitted to the host, who passes

the data further to the target device. Because this is a Bus-interface the

data-rate will be decreased if more devices are connected to the bus.

Conclusion:

Firewire and USB2.0 are able to handle the required amount of data . Nowadays

most of the computer have USB Port, but only a few of them have Firewire. To

provide more flexibility the USB-interface is chosen.

Instead of building up an USB2.0 interface from scratch an external USB-

module can be used to add this feature to the project. (chapter 4)

15

2.4. PROCESSING OF THE DATA ON THE COMPUTER

2.4. Processing of the data on the computer

Figure 2.4.: Data-Processing on the computer: The data arrives via the Interface
(USB, Firewire, Ethernet,..) at the computer. The read-out program
has to display the data and store them on the computer.

After the data have been transferred to the computer it have to be processed.

The program on the computer collects the data from the interface before new

data are arriving and old data are lost. This read out program also displays the

data for online inspection and stores it on the hard-disk. For this reason the

program LabVIEW is chosen.(chapter 5)

16

3. The FPGA-System

The STRATIX development board is made by Microtronix1. It consists of the

STRATIX-FPGA2 from Altera, 10 bit ADC and DAC, Ethernet, USB, PMC

connectors and normal I/Os3.

For this project only the PMC connectors and the Santa Cruz IOs of the FPGA

are used. The mezzanine card is connected to the PMC, and the interface to the

computer is connected to the Santa Cruz pins.

Figure 3.1.: FPGA Development board. [7]

The FPGA receives data from the mezzanine-card. These data are checked
1www.microtronix.com
2Stratix 1S25780
3Santa Cruz I/O Connectors

17

3.1. VERSION 1 : A DUAL CLOCK MEMORY AND A FIFO

for error4 during the transmission and prepared depending on the final usage of

the project. On the FPGA a defined amount of data must be stored for a short

period, until it is transferred to the computer.

The data from the mezzanine card arives synchronous with a 40 MHz-clock.

On the other side the QuickUSB-device has a clock-frequency of 48 MHz. To

connect these two systems the data must be collected from the first system and

handed to the second system.

For the storage of the data on the chip a FIFO5 can be used. This special

memory does not need an address bus. The first data written to the FIFO will

be the first data which will be available when reading from the memory.

Figure 3.2.: Structure of the FPGA System. On the FPGA the data must be
converted from one clock-system with 40 MHz to another clock-
system with 48 MHz.

There were two versions of the FPGA design. In the first version a memory

is used to convert the clock system and a FIFO is used to store the data on the

FPGA. In the later version the system consists of a FIFO which is able to do

both tasks.

3.1. Version 1 : A dual clock memory and a FIFO

3.1.1. Changing the clock system

To change the clock system a dual clock memory is used (fig. 3.3).

This memory has an own address- and data-bus for the write function and the

same set of busses for the read function. When all data have been written to the

memory with 40 MHz, it can be read from it with 48 MHz. Because this memory

4CRC-Check
5First-In, First-Out

18

3.1. VERSION 1 : A DUAL CLOCK MEMORY AND A FIFO

Figure 3.3.: Schematic fo the dual-clock memory

needs an address-bus for each procedure, two control modules must be developed

(one for the write cycle, one for the read cycle, see Appendix for VHDL-Code).

Figure 3.4.: Use a Memory to change the clocksystem: The this memory has
an own address bus for write and for read procedures. The control
modules Write module and Read module will generate the address
bus and write or read the data.

The function ’write data’ will take the data from the input and pass it over to

the memory with the appropriate address-values. When all data has been written

to the memory, the function ’read data’ will read it from the memory and write

it to the FIFO.

Figure 3.5.: Postsynthesis simulation of dual clock memory: Every 40µs data are
available. This data are converted to the 48 MHz clock system and
stored in the FIFO before new data arrives.

19

3.1. VERSION 1 : A DUAL CLOCK MEMORY AND A FIFO

Figure 3.6.: Postsynthesis simulation of dual clock memory 2: After writing data
to the memory, it is read using the other clock in the system, and
passed to the FIFO.

In figure 3.5 the simulation of the write and read cycle is shown. The first

two signals are the two different clocks of the system. The 16 bit wide data

data CRC L 6 is generated by a testmodule on the board. It consists out of 16

values of 16 bit which is equal to the full data-rate of the BLM-system.

When the signal nRead L is low, data are available. The module write data

passes the data to the memory generating the address bus at the same time.

When this procedure (Figure 3.6 at time 41.42 µs) is finished, the VHDL-module

’read data’ will read the data from the memory using the signal M5127 read en L

and the address-bus M512 rd address L.

To write the data to the FIFO the signal wr FIFO L is generated.

Regarding the simulation this signal starts one cycle before the data are

available. The reason is that the FIFO on the FPGA needs one cycle to recognise

that data should be delivered. Compared to the input, the data are available at

the same time as the signal nRead L is low 8.

The figure 3.5 shows a detailed view of the write and read procedure. To write

16 words to the Memory 400 nsec are needed. (16words
40MHz

= 400nsec). Because of

the fact that the reading procedure is using the 48 MHz clock, it only takes 333

nsec to read the data. (16words
48MHz

= 333nsec)

6The ’L’ behind the signal name indicates that this is an internal signal of the chip. Internal
signals can be accessed in a simulation by using an so called LCELL. For the final synthesis,
these LCELLs will be ignored.

7M512 indicates that this memory is synthesised to an on-chip memory block of the size of
512 bit.

8For this signal negative logic is used.

20

3.1. VERSION 1 : A DUAL CLOCK MEMORY AND A FIFO

3.1.2. Storage of the data

To store the data on the FPGA a FIFO9 can be used (fig. 3.7).

Figure 3.7.: Schematic of the FIFO

A FIFO is a special form of a shift register. The first value written to the

FIFO is the first value which is available at the output. A FIFO has two pointer.

One pointer indicates the first data in the memory, the other the last data in the

memory. With subtracting the address values of these two pointers, the fill level

of the FIFO can be calculated. If the fill level is equal to the size of the FIFO,

the FIFO is full. In this case when new data are written to the FIFO old data

will be overwritten. If the fill level is zero no data are stored in the FIFO.

Data can be written to the FIFO when the input write request is high. The

FIFO will store data on every clock cycle as long this signal is high. When reading

from the FIFO, the data will be delivered synchronous to the clock as long as the

signal read request is high.

Figure 3.8.: The FIFO can be used as data storage until the data can be read
from the computer.

9First in, First out

21

3.2. VERSION 2 : A FIFO CAN HANDLE IT ALL

3.2. Version 2 : A FIFO can handle it all

Another alternative and even a better way is to choose a FIFO which has a

separated read and write clock. The dual-clock FIFO(fig. 3.9) can be used

instead of the dual-clock memory and another FIFO.

Figure 3.9.: Schematic of the dual-clock FIFO

Because it does not need an address-bus, the layout of the FPGA system is

easier.

A FIFO has an additional output for the fill level. Depending on the size of

the FIFO the fill level signal is an n-bit10 wide bus, which value changes after

every time data are written to the FIFO or read from it.

Figure 3.10.: The dual-clock FIFO can be used to convert the clock system and
to data storage until the data can be read from the computer.

10n = ln(size of FIFO)
ln(2)

22

3.3. SIZE OF THE FPGA-FIFO

3.3. Size of the FPGA-FIFO

The size of the FIFO is an important parameter of the system. It determines

how fast or slow the computer must read the data from the FPGA. Basically the

FIFO should be as big as possible. The size is limited by the other functionality

which is realised on the FPGA. When the whole design is on the FPGA, and

there are some blocks of memory available, the size of the FIFO can be increased.

The lower limit of the FIFO-size is determined by the interface to the FPGA and

the computer. When the size is small, the computer has less time to receive and

to store the data. The size of the FIFO on the FPGA is chosen to 16384 words

with an bus-size of 16 bit.

3.4. Fill level indication

In chapter 5 a signal is needed to indicates when the fill-level is above a threshold

level. This signal will be used for the handshake between the computer and the

FIFO. To generate this signal a comparator is used. The value of the used width-

bus will be compared to a threshold value . This value should be a multiple of

the frame size and about 2
3

of the FIFO size. The remaining 1
3

is used as a buffer,

in case the computer cannot read the data in time.

The chosen threshold value is 10240 words.

When the value of the fill-level is bigger than this threshold the output signal

almost full will indicate that the FIFO is almost full by changing the value to

low 11 When the fill level of the FIFO is below the threshold, the signal will be

high.

Code-example of the threshold fill-level

When the used width of the FIFO is equal to or bigger as 1024 words the indicator

almost full will be 0. When data are read from the FIFO the used width will be

reduced and the indicator will be 1.

Fifo_used_width : process(clock_40MHz) is

begin

if rising_edge(clock_40MHz) then

if used_width >= 10240 then

11Negative logic is used for this signal.

23

3.5. HOW LONG DOES IT TAKE TO FILL THE FIFO?

almost_full <= ’0’; -- negative logic

else

almost_full <= ’1’;

end if;

end if;

end process Fifo_used_width;

3.5. How long does it take to fill the FIFO?

To calculate how long it takes until the FIFO is full, the datarate of the system

is necessary.

Full BLM-data:

data rate = 256bit
40µsec

= 6.4Mbit
sec

= 400, 000words
sec

12

tFIFOfullA =
size of the FIFO

data rate
=

16384words

400000words
sec

= 40.96msec (3.1)

tFIFOalmostfullA =
size of the FIFO

data rate
=

10240words

400000words
sec

= 25.6msec (3.2)

The read out program must be able to read the data before the FIFO is full.

tread out = tFIFOfullA − tFIFOalmostfullA = 15.36msec (3.3)

Reduced Data:

data rate = 256words
0.8388sec

= 305.17578word
sec

tFIFOfullB =
16384words

305.17578words
sec

= 53.687sec (3.4)

tFIFOalmostfullB =
10240words

305.17578words
sec

= 33.554sec (3.5)

tread out = tFIFOfullA − tFIFOalmostfullA = 20.133sec (3.6)

121 word = 16 bit

24

3.6. PHASE LOCKED LOOP

Conclusion:

In the first system it will take 41 msec (Equation 3.1) until the FIFO is full and

data will be overwritten. The Labview program must have a loop time far below

this time to make sure the data can be read out before the FIFO is full.

The second system will take about 54 seconds until the FIFO starts to overwrite

data. Every 33 seconds a new set of data will be read from the computer. This

update rate is not suitable for an online monitoring of the system.

By changing the threshold-value of the FIFO (almost full) to 1024 words the

update rate can be change to about 3 seconds.(refer to 3.8)

tFIFOalmostfullB =
1024words

305.17578words
sec

= 3.355sec (3.7)

tread out = tFIFOfullA − tFIFOalmostfullA = 50.332sec (3.8)

3.6. Phase locked loop

The design on the FPGA uses two different clocks. One clock (40 MHz) is

coming from the mezzanine card. The other one(48 MHz) is taken from the

QuickUSB module. It is necessary to use the clocks from these devices because

when communicating with external devices it is important to be synchronous to

their clock.

This board will be used as a mobile measurement system, which must be able

to handle various and sometimes also very noisy environments. To prevent that

the system has a malfunction because of the noise in its environment, the PLL13

is used to reduce the influence of the noise to the function on the system.

The PLL can also be used to compensate the travel time of the clock signal

to overcome the distance from one end to the other end of the cable. Because of

the short cables and the low frequency in this project (about 20 cm) this is not

necessary. (Pictures of the PLL can be found in the Appendix)

13Phase locked loop

25

3.7. BUTTON DEBOUNCE

3.7. Button debounce

A switch or a button is a oscillating mechanical system and its signal is not

appropriate for the use in a digital system without preparation. When closing a

switch, the two metal contact-plates will hit on each other and close the electrical

circuit. Due to the mechanical system the contact-plates will open and close again

several times until they stay closed. This procedure is called bouncing and lasts

for about 200 to 400 µsec (depending of the quality of the switch). When an

external switch or a pushbutton is used as an input of an digital Circuit, it must

be debounced.

A FPGA, running with a clock of about 40 MHz, will scan this input every

25 nsec. This means that the FPGA will recognise multiple events on the switch

until the bouncing is over. These multiple events can cause a malfunction on the

FPGA.

To prevent this, these multiple events must be ignored by the system until

the bouncing is over. This can be realised by comparing the last values in a

shiftregister. Every clock cycle a new value is written to the shiftregister. If all

values in the shiftregister have the same value, the bouncing is over and the value

of the switch can be used inside the FPGA. Usually it is not necessary to scan an

external switch with the onboard clock. Because for this a very big shiftregister

would be necessary to accumulate the data for about 200µsec.

SizeShiftregister ≥
tbouncing

clock period
(3.9)

Regarding to the equation 3.9 either the size of the shiftregister can be bigger

or the period of the used clock can be increased. Using the onboard clock of

40 MHz a shiftregister of a size of 8000 bit would be necessary to debounce for

200µsec. But there is no need to scan the switch with the onboard clock. For

the debounce process a much slower clock can be used. Using a slower clock it

is not necessary to compare 8000 values in a shiftregister. To generate a clock

out of a faster one, either a PLL or a simple counter can be used. The counter

is incremented on every clock of the input clock (clk 40 MHz). When the value

of the counter is equal to a specified value the output signal is inverted. The

advantage of this signal is, that no specialized functions of a FPGA are used, and

it can be reused in another FPGA family.

26

3.7. BUTTON DEBOUNCE

clk_divider : process(clk_40MHz) is

begin

if rising_edge(clk_40MHz) then

if cnt /= 2000 then

cnt <= cnt + 1;

else

cnt <= 0;

clk_100Hz <= not clk_100Hz;

end if;

end if;

end process clk_divider;

To calculate the size of the shiftregister or the necessary clock frequency to

debounce a signal the equation 3.10 can be used.

periodclock ≥
tbouncing

SizeShiftregister

(3.10)

For a shiftregister of 10 values and an debounce time of about 1000µsec a

minimum clock period of 100µsec is necessary. This is equal to a clock of 10 kHz.

debounce_pushbutton : process(clock_10000hz, debounced) is

begin

pb_debounced <= debounced;

if rising_edge(clock_10000hz) then

shift(9) <= not pb; --negative logic

shift(8 downto 0) <= shift(9 downto 1);

if shift(9 downto 0) = "1111111111" then

pb_debounced <= ’1’; -- if

else

pb_debounced <= ’0’; --

end if;

end if;

end process debounce_pushbutton;

Explanation of the VHDL-Code

Using a 10kHZ clock the value of the input signal pb is stored in a shiftregister.

When all values in the shiftregister are equal to 1 then the bouncing is over.

This code covers the bouncing process when a switch or a button is closed.

(When the button is not pressed, the value on the input is high, because this

27

3.7. BUTTON DEBOUNCE

signal line is connected to a pull-up resistance. When the button is pressed , a

connection between the ground and the pull-up resistance is made. A current

flows through the resistance, and generates a voltage on the resistance which is

equal to the supply voltage. Because of that voltage drop down, the signal line

of the button/switch is now low.

Simulation of the debounce process

In figure 3.11 the simulation of a debounce process is shown. Between 100 µsec

and 450 µsec the input signal pb bounces. This signal is scanned with a clock of

10 kHz. On every rising edge of this clock the actual value of the input signal

is written to the shiftregister shift. After 450 µsec the input signal is stable and

after 1 msec the output signal pb debounced is updated.

Figure 3.11.: Simulation of the debounce process.

Additional to this a single pulse is generated at the output single pulse. This

signal is used in the design to reset the FIFO when the pushbutton 1 is pressed.

Because this pulse lasts only for one 40 MHz clock cycle, it is not visible in the

figure and shown in a better resolution in figure 3.12.

Figure 3.12.: Simulation of the debounce process, Singlepulse

28

3.8. SWITCHES AND BUTTONS IN THE DESIGN

3.8. Switches and buttons in the design

There are three switches used to change the behaviour of the module and to test

the system. With these switches the system can be tested part by part.

Switch 1: Using switch 1 it can be chosen to read real data or only test values

which are stored or generated on the FPGA to test the system.

(If 0 (closed), then real data from the mezzanine card are transmitted. If 1

(open), test data from the FPGA is forwarded to the system)

Switch 2: Switch 2 changes the behaviour of the system. It can be switched

between transferring the raw data from the BLMs or only the maximum

values of the running sums.

(If 0, the full data-frame , If 1, the reduces data frame.)

Switch 3: Switch 3 can be used to send either the maximum values of the running

sums, or some test-data generated on the FPGA.This is useful to check If

the whole system is on the chip is working.

(If 0, the test data from the CRC-block is taken (0 to 254). If 1, the data

is generated on the FPGA (0 to 4))

Switch 4: Switch 4 changes the behaviour of LED141.

(If 0, the clock from the QUD is used. If 1, the clock from the mezzanine

card is indicated.)

The Pushbutton 1 can be used to reset the FPGA and to delete all data inside

the FIFO.

3.9. Led indicators

On the development board there are 2 LEDs which are used to indicate the status

of the system.

LED1 : is used to indicates that the clock from the mezzanine-card and the clock

from the QuickUSB-device are available. The mode can be changed with

14Light-emitting-diode

29

3.10. CONCLUSION:

the Switch 4. This is useful to check if the other devices are connected

and if the FPGA is working. For example, when the USB-device is not

recognised by the computer, it will not deliver a clock signal.

LED2 : This LED is internally connected to a counter. The counter value is

incremented when the signal nRead en is low, what means that data are

send to the system. Depending on the datarate the LED will flash with a

different speed. This indicator shows if data is arriving through the fibres.

3.10. Conclusion:

The final version of the FPGA system consists of ..

• .. two PLLs to receive the clocks from external source (QUD and mezzanine-

card).

• .. a test system, to test the transmission without connection to the BLM-

system. This test system is controlled by the switches.

• .. indicators to check if the system on the FPGA is working and to know if

data arrive through the fibres.

• .. a dual-clock FIFO which is able to change the clock systems and

accumulates the data.

• .. a fill-level indicator which modifies a signal, when there is enough data

stored in the FIFO for the transmission.

• .. a 16 to 8 bit Converter, to prepare the data for the transmission to the

computer. 15

15This part of the project was realized by Jonathan Emery.

30

3.10. CONCLUSION:

Figure 3.13.: Final overview of the implantation of the FPGA program.
31

4. The USB Interface

For the communication to the Computer the QuickUSB module from Bitwise-

systems1 is used. This device can be used to add a USB 2.0 interface to an

existing project. It consist of a µ-controller from Cypress2 and offers several

ports like a 16 bit high speed parallel port(HSPP), three 8-bit general purpose

ports, two RS-232 ports, one I2C bus and an SPI port. The product is delivered

with a precompiled library for Windows and Linux which can be used in the own

project to communicate with the module.

Figure 4.1.: QuickUSB module

For this project the HSPP3 and one of the 8-bit general purpose ports will be

used. The HSPP is a 16 bit wide synchronous bus which is able to transfer data

up to a data rate of about 48 Mbit/sec. This data rate can be achieved because

the HSPP is directly controlled by the USB-Engine and not by the 8051-Core of

the µ - controller. All the other ports on the chip are controlled by the 8051-Core

and then passed to the USB-Engine. (fig.4.2)

1www.bitwisesys.com
2CYC68013-128AC, also called EZ-USB FX2, www.cypress.com
3high speed parallel port

32

www.cypress.com

4.1. SETTINGS OF THE QUD

Figure 4.2.: Internal Structure of the µ - controller on the QuickUSB module. To
transfer data at high speed the HSPP is directly connected to the
USB-Engine.

The small data sheet of the QUD can be found in the Appendix. The full data

sheet including all library functions can be found www.bitwisesys.com.

4.1. Settings of the QUD

The device has several settings to affect its behaviour. For the HSPP it is possible

to choose between an 8 bit or a 16 bit wide bus. If an external memory, which

needs an address-bus, is connected the port C can be configured as an address-

bus with or without auto-increment function. The FIFO of the HSPP can be

either modified as Master or Slave. The QUD can also be used to program a

FIFO in passive serial mode.

All Settings of the QUD4 are saved in a volatile memory. They are

not stored, if the module is not powered ! It is necessary to rewrite

the settings to the QUD when it is attached to a computer. ([8], page

8)

The HSPP has an own FIFO which has a direct connection to the USB-Core.

Because of that fact it must not pass all the data over the µ-controller and can

4QuickUSB device

33

www.bitwisesys.com

4.1. SETTINGS OF THE QUD

transmit data with an data-rate up to 48 Mbyte/sec in Burst Mode.

The QUD-FIFO can be controlled using the signals REN, WEN and CMD DATA.

To read data from the HSPP to the computer the signal REN has to be high.

It is possible to transfer the data in the other direction using the signal WEN.

The signal CMD DATA determines if the data on the address bus (Port C) is an

address or a data.([8], page 11, 12)

4.1.1. Width of the HSPP

The bus-width can be switched between 8 - and 16 bit, depending on the project.

When using the 16 bit version, the data is read in two steps. The lower 8 bit of

the 16 bit arrives first, the higher 8 bit arrives second.

The reason is that the function of the QUD-Library can only read a 8 bit value

at a time. To display the data correctly on the computer the two bytes must

be shifted and the result must be merged to one 16 bit variable. The computer

will take more time to rearrange the data and to store it to the computer. When

the computer is not fast enough to handle all this in time, the FPGA-FIFO will

overflow and data will be lost.

It is faster to merge only the two bytes, than to switch and to merge them.

To prevent a time consuming data shifting on the computer the FPGA will only

transmit on a 8 bit wide bus. (16 to 8 bit converter)

4.1.2. HSPP FIFO settings

The FIFO of the QUD can be either configured in master- or slave- mode.

Master mode

The FIFO of the HSPP is controlled by the QUD-library. Every transaction

must be started from the computer using the QUD-library. Using this mode it is

possible to write data to a memory using the additional address bus.

To change the FIFO to master mode the command WriteSettings must be

used. For master mode the setting value is 0xFA. It is possible to write to

and read data from the FIFO using the commands QuickUSBWriteData and

QuickUSBReadData.

34

4.2. CONNECTION BETWEEN THE QUICKUSB AND THE FPGA

Slave mode

The difference to the Master mode is that in this mode the FIFO can be loaded

by an external source. The FIFO is totally controlled by the external device. To

load and read the FIFO the signals ’REN ’,’WEN ’ and ’CMD DATA’ are used.

In this mode the QUD must not wait for the computer to read or write data to

an external device.

Conclusion:

On the first view the salve-mode would be the best solution for this project. The

FPGA writes the data direct to the QUD-FIFO. Then the QUD will take care

that the data is send to the computer.

But when using the master mode another advantage is available. The computer

can control the read out process and read the data when the computer is not busy.

In master mode the computer can ask continuously the system if enough data

is accumulated on the FPGA.

Because windows is not a real time operating system, it will not process the

data immediately when it is available. This method ensures that the computer

will receive data when it is ready. (Refer to 5.3 for the structure of the Readout

program.)

4.2. Connection between the QuickUSB and the

FPGA

The cable between the QUD and the FPGA contains the HSPP (port B and

port D) plus its control signals (REN,WEN and CMD DATA). Also one signal is

necessary to carry the fill-level for the FPGA-FIFO. For this the general purpose

port A is used. Because the FPGA must work synchronous with the QUD the

clock of the QUD must be transmitted. For later enhancements (usage of the

DAC on the FPGA, ..) all general purpose ports are added to the cable. On the

FPGA-side the Santa Cruz connectors are used. These are 72 IOs of the FPGA

which can be used for prototyping.

The cable contains following signals:

• HSPP (Port B and D) plus its control signals

35

4.2. CONNECTION BETWEEN THE QUICKUSB AND THE FPGA

• all general purpose IOs (Port A,C,E)

• 48 MHz clock

The detailed pin assignment of the cable can be found in the appendix.

36

5. The readout program

Part of this project is to visualise the data on the screen and store it on the

hard-disc for further analysis.

The QUD includes a c-library to communicate and to control the device with

a computer. This offers the possibility to create an own c-project to store the

data on the hard-disc.

But for this project the better solution is to use the National Instruments

Software ”LabVIEW”.

5.1. Why use LabVIEW?

Depending on the measurements it is sometimes better to display the data rather

in a graph than in a table. For example when the data consists of the average-

values of the running sums a graphical display is more convenient than a table

with the values. In LabVIEW both versions can be realised easily and even at

the same time.

LabVIEW is also a proper tool to acquire, visualise, analyse and store data.

On the National Instruments Homepage1 LabVIEW is described like this:

LabVIEW is the development environment of choice for many

engineers because of its unique ability to acquire, analyze, and present

data. LabVIEW contains a graphical programming model that is easy

to use and is easy to visualise because LabVIEW programs consist

of nodes connected by wires. Using LabVIEW reduces development

time because of LabVIEW’s built-in measurement and automation

functionality. In addition, LabVIEW automatically handles many

low-level programming concepts such as memory management and

multi-threading. LabVIEW also includes features designed to create

1www.ni.com

37

5.2. USE THE C-LIBRARY IN LABVIEW

readable, safe, and reliable code. LabVIEW code easily interfaces with

other programming languages, allowing developers to take advantage

of the benefits of LabVIEW while always using the appropriate tools.

[10]

The QUD comes with c-library which cannot be used in LabVIEW directly.

First the functions in the library must be linked to LabVIEW.

Regarding to a benchmark test[11] made by NI2 an ...

... application developed using LabVIEW executes in the same

amount of time as the same application would if it were built in

a general-purpose programming language such as C. In some cases,

applications built in LabVIEW run faster, in some cases, applications

built in a general-purpose programming language run faster. On

average, the application executes in the same time.

The key task for this project is to check if LabVIEW is able to store the data

fast enough. (fig. 5.1

For the File Write test the task of the two programs was to write a string of

10,000,000 characters into a text file.3

Conclusion:

In average Labview takes only 19% more time to write the data to a file, which

is negligible for this project. If there would be a major difference in the time it

should be considered to use C instead of LabVIEW.

5.2. Use the C-Library in LabVIEW

To use external Code in LabVIEW it is necessary to include the C-Library in

LabVIEW. The tool for this operation is the ’call library function node’. This

function is a link to the target library. It passes the inputs to the external library

and receives the results to make it available inside LabVIEW. Every function

inside the Library can be accessed with the ’call library function node’. To do

this it is necessary to enter the path of the library and to select the function. The

2National Instruments
3For all other tasks of the benchmark, please proceed to the cross-reference.

38

5.2. USE THE C-LIBRARY IN LABVIEW

Figure 5.1.: LabVIEW benchmark : In this benchmark the same task has to be
achieved by LabVIEW 7 Express, LabVIEW 6i and C. In the File
Write task LabVIEW 7 Express was about 19% slower than C.[11]

’call library function node’ will change its appearance depending on the amount

of inputs and outputs of the c-library function.

Figure 5.2.: Symbol of the call library function node : Interface to use an
external C-Code in LabVIEW. It passes over the input values to
the external library and receives the outputs.

The most important part is to choose the right calling convention for the library.

In this case the QUD-library needs to be called in STANDARD CALL-MODE

(WINAPI), not in the C-MODE. This information depends on the library and

the developer and should be supported by the developer. If the calling convention

is wrong, the Labview will not be able to set up the link to the library and the

program will crash.

Also the datatype of the variable must be correct. It is necessary to know if

the variable is a value or a pointer to a value. If the data type is not correct or

a value is assigned to a pointer the program will not work properly.

It is important to know that a data type in C is not equal a data type in

LabVIEW. (table 5.1)

39

5.2. USE THE C-LIBRARY IN LABVIEW

data type Explanation
C LabVIEW

char XXX 8-bit, signed or unsigned
signed char I8 8-bit, signed

unsigned char U8 8-bit, unsigned
int XXX either 16- or 32-bit type, signed

unsigned int XXX either 16- or 32-bit type, unsigned
short I16 16-bit, signed

unsigned short U16 16-bit, unsigned
long I32 32-bit, signed

unsigned long U32 32-bit, unsigned

Table 5.1.: Comparison of the data types in C and in LabVIEW : It is important
to pass the variables in the correct data type to the c-library, otherwise
the program will not work. In this table there are only the data types
which are used in the program. [12]

Figure 5.3.: Labview Code for using the call library function node to include
a function of a c-library to LabVIEW. Depending on the amounts
of inputs and outputs the call library function node will change its
appearance.

Example using the QuickUsbWritePortDir-function:

Here is an example to link a function in the c-library to Labview. Full calling-

name of the function:

int QuickUsbWritePortDir(HANDLE hDevice, unsigned short address, un-

signed char data)

Regarding the manual of the QuickUSB module [8] the return value of type

integer must be assigned in LabVIEW to a variable of type unsigned 16-bit

integer.

40

5.3. STRUCTURE OF THE LABVIEW PROGRAM

The variable hDevice is a of type ’handle’ so in this case LabVIEW has to

use an unsigned 8-bit char variable.

For the variable address(unsigned short) LabVIEW needs to assign an

’unsigned 16-bit integer ’ and for the data (pointer to an unsigned char) an

’unsigned 8-bit char ’ must be used.

Explanation of the LabVIEW code in Figure 5.3:

The variable hDevice and the cluster Wr port direction settings, containing

the two variables address and data, feed the call library function node-function.

If an error occurs the return value will be zero and in this case a pop up-window

will appear telling the user : ”The direction of the port cannot be written.”

A usual mistake in this case is that the device is not opened before or the

hDevice(Device ID) is invalid. If the return value is not equal to zero the values

of the input-cluster are successfully written to the QUD.

Like in this example all necessary functions of the c-library were linked to

LabVIEW. For a list of all linked functions refer to the Appendix : Functions in

Labview.

5.3. Structure of the LabVIEW program

After including all necessary functions of the QuickUSB-Library to LabVIEW,

the code must be developed. First of all a basic structure of ”How the program

should work” must be determined.

The basic functions are:

1. All QUD-modules attached on the computer must be found.

2. Open the QUD which is attached to the computer to make it accessible for

the other functions.

3. The QUD must be configured.

• The FIFO of the HSPP must be configured in the desired way.

(write settings.vi) Refer to chapter 4.1.

41

5.3. STRUCTURE OF THE LABVIEW PROGRAM

• If a general purpose I/O is used, it has to be configured. (write port Dir.vi)

4. Waiting for the data.

5. Read data when it is available. Please refer to chapter 5.3.2.

• Store the data on the hard-disc.

• Display the data in an appropriate way.

6. Close the QUD when the program is stopped.

After linking the QuickUSB-Library to LabVIEW most of these functions are

available in Labview. For this project not all features of the QUD-module are

needed. Refer to chapter 5.3.1 for further information. A detailed description of

the Read data - block can be found in chapter 5.3.2.

Figure 5.4.: Flowchart of the LabVIEW readout program.

In figure 5.5 the user interface of the LabVIEW read-out program. When the

program is running the indicator waiting for module flashes to show that the

program is searching for a connected QUD. When a QUD is found the indicator

will stop flashing and the name of the QUD will appear next to the indicator.

Now it is possible to change the settings of the QUD using the Settings box.

If it is not necessary to store the data on the computer, the check box store

data can be turned off. The file for the data can be chosen in the text box file

path. It is possible to choose an existing file or to append new data. If the file

does not exist, it will be generated by the program.

When all settings are correct, the acquisition can be started using the button

read data. The acquisition process can be interrupted and continued using this

button. The data will be shown in the display data. When the acquisition is

done, the program can be stopped using the button Stop.

42

5.3. STRUCTURE OF THE LABVIEW PROGRAM

Figure 5.5.: User interface of LabVIEW program

5.3.1. Configure the QUD in LabVIEW

Because the settings of the QuickUSB-device are not stored in a non-volatile

memory, it will lose all settings when it is not supplied with power. So it is

necessary to configure the QUD every time it is connected to a computer.

To do this in LabVIEW the subVI ’write settings.vi can be used. With the

input variable settings all functions of the QUD can be modified.

The actual values of the variables are shown next to the buttons. In this project

the width of the data bus is 8 bit. The FIFO of the QUD must be configured as

master. On the FPGA the data is stored in a FIFO.

Since the FIFO does not need an address bus, this settings should be disabled.

Furthermore it is not necessary to program a FPGA in passive serial mode.

5.3.2. Read the data from the QUD

As long as the FPGA-FIFO is not full it collects the incoming data. When it is

full and data is arriving, old data will be overwritten by the new data. To prevent

a loss of data it is necessary to read out the data before. There are two possible

versions of ’how to read the data’.

1. If the datarate of the incoming data and the size of the FPGA-FIFO is

43

5.3. STRUCTURE OF THE LABVIEW PROGRAM

known, it is possible to use a timed loop in LabVIEW to read the data

on a constant timebase.

pro: The LabVIEW program is simpler. There is only a timed loop to read

the data from the QUD. The timed loop will take care that the data

is read from the FPGA-FIFO on a regular timebase.

con: This version needs more user interaction, and user need to know, how

many values are in the FIFO after a certain amount of time.

If the time is too short, or the amount of value which should be read

too big, the program will try to read more data than there is in the

FIFO.

On the other hand side, if the time between two reading cycles is too

long, or the amount of values to read too small, the data in the FIFO

will increase, until the FIFO is full. When the design continues to

write data into the FIFO, the new data will overwrite the old data,

and the old data will be lost.

Another possibility for the read-out program is ...

2. ... to wait until the FIFO has reached a certain fill-level which is then

indicated by a signal called almost full). When this event occurs, the

program reads a certain value of data from the FIFO . After the readout

process there will still be some data in the FIFO, but this will remain inside

the FIFO until the next readout. (fig. 5.6)

pro: If data is available Labview will read a number of data, otherwise the

program will wait. The system is independent from the data rate of

the data from the BeamLossMonitors, as long as the data rate is not

too big to be transmitted via USB 2.0. When the data rate changes,

the time slice to read the data will also change. If the data rate is low,

the LabVIEW program will wait until there is enough data stored on

the FIFO. If the data rate is high, the program will read the data more

often to make sure that the FIFO will not overflow.

con: This handshake must be implemented to the Labview program. The

program must wait for the trigger signal (almost full) to read the

44

5.3. STRUCTURE OF THE LABVIEW PROGRAM

data from the FIFO on the FPGA. The LabVIEW program must

periodically scan this signal to know, when data is available. When

use a timed loop, LabVIEW will take care that this signal is scanned

with a fixed timebase.

Figure 5.6.: Schematic view of the usage of the FPGA-FIFO. When data is
arriving, it will be stored in the FIFO. When the FIFO reached a
certain fill level this will be indicated by a Signal (almost full). The
LabVIEW program will scan this signal periodically. When a certain
amount of data is stored in the FIFO LabVIEW will read n values
from the FIFO.

Conclusion:

The first mode to ask for data after a certain amount of time needs more user

interaction and the knowledge of the data-rate. Because of this it is vulnerable

for errors due to the wrong setup. If one of the parameters is not adequate for

the current system, the data will be lost, or the program will read wrong data,

which is not good either.

In the handshake - mode the program will wait until enough data is stored in

the FIFO. Depending on the datarate this can be between 25 milliseconds or even

up to about 33 seconds (or 3 seconds when using a smaller threshold). 5.3.5

45

5.3. STRUCTURE OF THE LABVIEW PROGRAM

5.3.3. Realisation of the handshake

To realise this handshake one of the GPIO4 ports of the QUD can be used. For

this reason the functions Write prot Dir were also implemented to LabVIEW.

This one pin is used for the almost full - signal and must be configured as an

input pin. The other signal pin which is used to notify the FIFO that data is

requested (Read Data Request) belongs to the HSPP.

5.3.4. The readout procedure

When the LabVIEW program is running, it will ask the QuickUSB-device to

periodically scan the signal almost full. When this signal indicates that data is

available, the program will force the QUD to read n values of data. The QUD

will use the REN5 - signal to indicate the FIFO on the FPGA that it should

deliver data. As long as the the signal Read Data Request6 is 1, the FIFO will

deliver data. This time depends on the amount of values that should be read.

Figure 5.7.: Schematic of the transmission of the signals between the development
FPGA-board and the PC LabVIEW program. Labview will wait
until data on the FIFO is available. When LabVIEW is sending a
read-request the QUD will forward this signal to the FIFO on the
FPGA. As long as this read request is active, the FIFO will deliver
data.

4General Purpose I/O
5Read Enable
6This signal is one of the control lines of the HSPP (=REN).

46

5.4. EXPLANATION OF THE LABVIEW CODE

5.3.5. The data-rate of the system

The LabVIEW program needs to work properly for two versions of a system.

In one system (A) the raw data of the BLM system must be transmitted. This

means the data from up to 8 ionisation chambers plus some ID-data. This version

will be used by Markus Stockner at the DESY laboratories in Hamburg.

The other system (B) delivers the maximum values of the running sums every

second. (chapter 2.1)

5.4. Explanation of the Labview Code

In the next columns the most important parts of the Labview program final.vi

will be explained. The full source code and the explanation of the subVIs can be

found in the appendix.

The first element is a stacked sequence (fig.5.8). This will run once when the

program is started. In this sequence all buttons and values were initialled to their

default value.

Figure 5.8.: Picture of the initializing part of the LabVIEW program.

47

5.4. EXPLANATION OF THE LABVIEW CODE

The next element (fig.5.9) is a timed loop with the function find module.vi.

As the code will only receive data when a module is found on the system, the

program will stay in this loop until a module is found. When more than one

modules are found the first module will be chosen. This can be modified by

changing the value of the index array - function. 7

To indicate the loop until a module is found, the indicator will flash during

the search. When one or more module is found this indicator will disappear and

the loop will be terminated. The recently found module will now be opened

(open device.vi), so that it can be used by the next modules.

Figure 5.9.: Picture of the wiat-part of the LabVIEW program. The program
will wait until a QUD is found on the computer. A flashing LED will
indicate that the program is searching for a module.

The next operation(fig.5.10, outer while-loop) is to modify the settings for this

project. As mentioned above all settings must be written after the Power ON,

because they are stored in a volatile memory. For the almost full signal, the pin 0

of port A is configured as input by the function Write Port Dir.vi. All this steps

7value = 0 → first module, 1 → second module will be chosen

48

5.4. EXPLANATION OF THE LABVIEW CODE

will be run without user interaction when the program is started and a QUD is

connected.

Now when the module is fully configured the program waits for the user to start

the acquisition by pressing Wait/ReadData (fig.5.10, inner while-loop). Before

the user does this it is possible to enter a new filename for the data. If the file

already exists, the program will append the new data after the old data in the

file, so no data will be overwritten by accident.

The core of the code is the while - loop where the signal almost full is checked

(fig. 5.10). In this part of the code the function Read port.vi scans the Pin 0

from Port A continuously. Which pin should be scanned can be changed by the

inputs of the subVI U8array 2 bit. If the value of this signal is false8 data is

available in the FPGA-FIFO. For development the boolean signal almost full is

converted to an integer number (0 or 1) and connected to a chart display.

When the user presses the button ReadData, the program will periodically

scan the Signal almost full. In case that there is enough data in the FIFO the

program will read a certain amount of values. The subVI modify dataarray.vi

will concatenate the two 8 bit arrays to one 16 bit array. The the data can be

stored and displayed.

The user can interrupt and continue the acquisition by pressing Wait/Read-

Data. When the program is ended by pressing Stop the QUD will be closed by

the subVI close device.

Indicators in the program

There are plenty of indicators in the program to visualise what is going on. First of

all there is the indicator ’waiting for module’ which is flashing while no module is

found on the system. This indicator will disappear when a module is found. The

most important one is the chart-indicator for the incoming data. The maximum

values of the x- and y-axis can be changed by selecting them with the mouse

and type in the new value. The numeric indicator ’check for data’ is connected

to the iteration counter of the loop. The indicator ’read data and store’ is a

counter which only increments when data is read from the FIFO and stored on

the hard-disc.

8The signal almost full uses negative logic. When the value is true the FIFO is accumulating
data. When it is false the FIFO is ”almost full”

49

5.4. EXPLANATION OF THE LABVIEW CODE

Developer version of the program

For debugging and for the tests in chapter 6 a special version of the program

was used. The difference is that the signal almost full and the loop-time are also

stored in a file during the acquisition. These values are necessary to verify that

the read-out program is working properly. The code of the developer version can

be found in the appendix.

50

5.4. EXPLANATION OF THE LABVIEW CODE

Figure 5.10.: Picture of the wait for data-part in LabVIEW. The loop will scan
the signal. When data is available, it will be read and stored to a
file.

51

6. Test measurements

On the next pages the setup of the test measurements and the results are shown.

Two tests were made to prove the functionality of the system. The first will work

with the reduced data-rate and will prove that the data is stored correctly on the

computer. The second test will work with the full data-rate to prove that the

system is fast enough.

As mentioned before the FPGA-system has two test modes which can be

activated by using the switches. Because the running sums calculation was

not fully implemented when this measurements were made, the test of the low-

datarate version will use one of the test modes of the system. The other test will

use an external device which sends data over the fibres to the system.

Specifications of the computer:

• P4 - 3.0GHz

• 512 MB RAM

• Win XP

6.1. Test of the version : LOW DATA-RATE

To prove that the data is stored correctly on the computer this test uses the

onboard test functions. The test-data is taken from the CRC-block. The data-

rate of this test is equal to the date-rate when transmitting only the reduced

data-frame.

6.1.1. Measurement setup

The test values are stored in a memory and can be accessed by using the switches

of the FPGA board. These values reach from 0 to 255 and have the shape of a

52

6.1. TEST OF THE VERSION : LOW DATA-RATE

sawtooth. The threshold of the system is set to 1024 values, the update rate is
256words
0.8388sec

. This means that every 3.355 seconds a bunch of 1024 values are read

from the FPGA and stored on the computer.

Settings of the switches for this test:

Switch 1: 1 : The FPGA is in test mode.

Switch 2: 1 : The data amount is equal to the reduced data-frame.

Switch 3: 0 : The data is produced on the FPGA for tests.

Switch 4: X1 (both possible)

6.1.2. Results

In figure 6.1 the results of two read cycles (2 times 1024 values) are shown. The

values reach from 0 to 255 as expected. No data is lost during the transmission.

The interface is working as expected.

Figure 6.1.: Test data saw tooth values as function of the data index. (low
datarate)

6.1.3. Conclusion

Due to the low data-rate of this test, Labview has no timing problem to read and

store the data. The stored data is equal to the data which is send. This means,

that this version of the system is working correctly.

1Switch4 has no influence to the measurement, because it changes only the behavior of LED1.

53

6.2. TEST OF THE VERSION : HIGH DATA-RATE

6.2. Test of the version : HIGH DATA-RATE

Because the tunnel-card is not ready for tests, a fibre test module(fig. 6.2) is used

for this test. Using this module it is possible to send any values over the fibres.

This is the final test of the whole system starting from the mezzanine card to the

computer with the full data-frame.

Figure 6.2.: Fibretest module

6.2.1. Measurement setup

To test the whole chain of the system the data must arrive from the fibres. In

this measurement an external device is used to generate a test-pattern and send

it with a laser-diode via the fibres.

Figure 6.3.: A block diagram view of the test system.

In figure 6.3 a block diagram of the test system is shown. The picture below

(fig. 6.4) shows the arrangement of the devices. The additional device on top of

the mezzanine card is to rearrange the connectors on the mezzanine so that it fits

on the tunnel-card. In this setup it is necessary to connect the signal via a cable

to the FPGA-board.

54

6.2. TEST OF THE VERSION : HIGH DATA-RATE

Figure 6.4.: A picture from the test system.

Settings of the switches for this test:

Switch 1: 0 : The data is taken from the input of the fibres.

Switch 2: 0 : The full data-frame is transmitted.

Switch 3: X2 : (both possible)

Switch 4: X3 : (both possible)

This test is realised in two versions:

In one version the data is displayed in LabVIEW. In the other version all

displays in LabVIEW are disabled. This is to show the influence of the displays

to the looptime of the program.

To verify that all data is stored and the FPGA-FIFO did not overrun, the

signal almost full and the LabVIEW variable loop-time were also stored. With

this values it can be verified that LabVIEW was able to read the data from the

QuickUSB and store it on the hard-disc in time. When data-rate is too high so

that LabVIEW cannot empty the FPGA-FIFO fast enough, the signal almost full

2Switch3 not relevant because it changes only which test data is chosen.
3Switch4 has no influence to the measurement, because it changes only the behavior of LED1.

55

6.2. TEST OF THE VERSION : HIGH DATA-RATE

will stay low. This means that even when data is read from the FPGA-FIFO the

data is exceeding the threshold. When the FPGA-FIFO is read continuously

without overrun, this signal will be 1 for about 25 milliseconds (refer to chapter

3.5) when the threshold is reached for one loop-cycle 0. The time of the loop will

be higher because the program needs more time to read the data from the USB

interface and store it on the computer.

Loop-time of the program

The loop-time can be calculated after the acquisition using the stored values of

the LabVIEW-variable looptime. The smallest value of this signal is 1 msec which

is given by LabVIEW itself. When this variable stays 0 for five cycles and then

the value is 1 for one cycle, that means that this value of this variable was 5 loops

below 1 millisecond. This means further that the program made 6 loops in about

1 millisecond.

The time between the read out cycles can be estimated by summing up the

loop-times.

e.g.: 16 x 1 msec + 1 x 9 msec (for the storage process) = 25 msec. (fig. 6.7)

This time should be equal to the time it takes until the data in the FPGA-FIFO

reaches the threshold which is about at 25 milliseconds.

56

6.2. TEST OF THE VERSION : HIGH DATA-RATE

6.2.2. High data rate transmission results : with the

LabVIEW display

Figure 6.5 shows the signals almost full and looptime at each cycle of the program.

Figure 6.5.: Read out cycle loop time as function of the loop index. In this test
the displays were activated.

6.2.3. High data rate transmission results : without the

LabVIEW display

In figure 6.6 a small part of the results from the stored file are shown. Figure

6.7 shows the signals almost full and looptime. The values of the looptime are

summed up after each read-out cycle and displayed as signal looptime absolut.

57

6.2. TEST OF THE VERSION : HIGH DATA-RATE

Figure 6.6.: Test saw tooth values generated by the optical transmitter as function
of the data index. This is a short sector or the data stored on the
computer. The displays are disabled during the acquisition.

Figure 6.7.: Read out cycle loop time as function of the loop index. In this test
the displays were deactivated to increase read out speed. The timing
of the program can be estimated using the time of the loops.

58

6.2. TEST OF THE VERSION : HIGH DATA-RATE

6.2.4. Interpretation of the results

With display

When the display is enabled (figure 6.5) the loop-time is up to 50 milliseconds.

This causes the FIFO to overrun continuously and turns the value of the signal

almost full to 0 for more than one cycle. The whole procedure takes longer to

update the displays, because the data cannot be read in time they are lost.

It is recommended for the acquisition with the full datarate to disable the

displays. The actual stored values are not displayed here, because it is obvious

that this data is not correctly stored to the hard-disc.

Without display

In figure 6.6 the correctly stored data without the display are shown. All data

are stored correctly on the computer.

In the figure 6.7 it is shown, that the computer scans the signal almost full

continuously, until the data exceeds the threshold and is transmitted to the

computer. As expected, the signal almost full in figure 6.7 remains at 1 most

of the time. Only when data is in the FPGA-FIFO it changes the value for one

cycle. At loop number 239 the value of the looptime is up to 3. In this moment

the LabVIEW program needs more time to finish the loop, because the computer

was busy with another operation.

59

7. Conclusions

7.1. FPGA

The implementation of the handshake allows that the system can run without user

interaction. When data are in the FPGA-FIFO they will be transmitted to the

computer. If not, the FPGA-FIFO will wait and accumulate the data. Because of

the indicators on the board it is possible to check if the system is working and if

data are arriving. The possibility to change behaviour of the system is important

to check if there is a problem on the FPGA or on the transmission line.

Improvements

When the full functionality is implemented in the FPGA, it might be possible to

increase the size of the FPGA-FIFO.

7.2. QuickUSB

Using the QuickUSB module from bitwisesys was a good idea to add a common

computer interface to the project. A big advantage is that the library is already

included in the package, so it is easy to develop a program in C, VisualBasic or

in this case LabVIEW. One disadvantage is that the module cannot transmit 16

bit at once. The library can only send 2 times 8 bit.

7.3. LabVIEW

The possibility to link an external library to LabVIEW and make the functions

available increases the operational area of LabVIEW.

Regarding the positive results of the tests LabVIEW is able to handle the high

data-rate without the displays.

60

7.3. LABVIEW

Improvements

There is room for several improvements. To proove that the system is working as

defined the transmitted data was stored and displayed. When sending real data

not every bit of this signal is necessary for the display. A display which shows

the values of the 8 chambers in a graph will ease the data check.

Another improvement will be a warning indicator, using the signal almost full,

to show that the FPGA-FIFO overruns when it is 0 for more than one loop.

Furthermore it is possible to use another signal of the QUD to tell the

LabVIEW program the actual data-rate of the system. It will then change the

amount of data that should be read automatically and without user intervention.

61

8. Abbreviations, list of figures and
list of tables

62

Abbreviations

CERN : Conseil Europèen pour la Recherche Nuclèaire

LHC : Large Hadron Collider

BLM : Beam Loss Monitors

ASIC : Application Specific Integrated Circuit

ADC : Analog digital converter

VHDL : VHSIC Hardware Description Language

VHSIC : Very High Speed Integrated Circuit

VI : Virtual Instrument (Program in Labview)

subVI : subprogram in Labview

FPGA : Field-Programmable Gate Array

QUD : QuickUSB-Device

HSPP : High-Speed Parallel Port

GPIO : General Purpose I/O

FIFO : First In, First Out

63

List of Figures

1.1. Accelerators at CERN [2] . 2
1.2. Experiments at the LHC . 3
1.3. Schematic view of the losses. 4
1.4. Quench-levels of the LHC . 5
1.5. Ionisation chambers: Type A, Parallel Plate Chamber [2] 7
1.6. Position of the ionisation chambers next to the magnets. 7
1.7. The full data frame of the BLM-system 8
1.8. The GOH board . 9
1.9. The mezzanine card. 9

2.1. Overview of the test system. 11
2.2. Running sums . 12
2.3. Counts to dump . 13
2.4. Data-Processing on the computer 16

3.1. FPGA Developement board . 17
3.2. Structure of the FPGA System. 18
3.3. Schematic fo the dual-clock memory 19
3.4. Use a Memory to change the clocksystem 19
3.5. Postsynthesis simulation of dual clock memory 19
3.6. Postsynthesis simulation of dual clock memory 2 20
3.7. Schematic of the FIFO . 21
3.8. The FIFO as data storage . 21
3.9. Schematic of the dual-clock FIFO 22
3.10. The FIFO as clock-converter and as data storage 22
3.11. Simulation of the debounce process. 28
3.12. Simulation of the debounce process, Singlepulse 28
3.13. Final overview of the implantation of the FPGA program. 31

4.1. QuickUSB module . 32
4.2. Internal Structure of the µ - controller on the QuickUSB module . 33

5.1. LabVIEW benchmark . 39
5.2. Symbol of the call library function node 39

64

List of Figures

5.3. LabVIEW code example : write port direction 40
5.4. Flowchart of the LabVIEW readout program. 42
5.5. User interface of LabVIEW program 43
5.6. FIFO with almost full signal . 45
5.7. Labview signals . 46
5.8. Picture of the initializing part of the LabVIEW program. 47
5.9. Picture of the wait-part of the LabVIEW program. 48
5.10. Picture of the wait for data-part in LabVIEW. 51

6.1. Test data saw tooth values as function of the data index. (low
datarate) . 53

6.2. Fibretest module . 54
6.3. A block diagram view of the test system. 54
6.4. A picture from the test system. 55
6.5. Read out cycle loop time as function of the loop index. In this test

the displays were activated. 57
6.6. Test saw tooth values generated by the optical transmitter as

function of the data index . 58
6.7. Read out cycle loop time as function of the loop index. Display

deactivated. 58

A.1. FPGA Version 1 : dual-clock Memory and FIFO 77
A.2. FPGA Version 2 : dual-clock FIFO 78
A.3. FPGA : PLL . 79

C.1. Labview read-out program without display (developer version) . . 89
C.2. Labview read-out program with display during an acquisition.(developer

version) . 90
C.3. Labview read-out program (final version) : front panel 91
C.4. Labview read-out program (final version) : block diagram 92

65

List of Tables

1.1. Signal selection- and Dump-table 10

2.1. Table of length of the running sums. 13

5.1. Comparison of the data types in C and in LabVIEW 40

66

Bibliography

[1] internal Document Server of the BLM-section, April 2005

[2] internal CERN Document Server, April 2005

[3] Arauzo A., Dehning D., Ferioli G., Gschwendtner E., ”LHC Beam Loss
Monitors”, CERN-SL-2001-027-BI, 5th European Workshop on Diagnostics
and Beam Instrumentation, Grenoble, France, 13-15 May 2001.

[4] Quench levels and transient beam losses in LHC magnets, J.B. Jeanneret,
D. Leroy, L. Oberli and T. Trenkler, LHC Project Report 44, July 1996.

[5] Friesenbichler W., ”Developement of the of the Readout electronics for the
Beam Loss Monitors of the LHC”, June, 2002

[6] Hodgson M., (”Beam Loss Monitor Design Investigations for Particle
Accelerators”), April, 2005

[7] Microtronix: ”Stratix Development Kit Product Prochure”,

http://www.microtronix.com, April 2005

[8] Bitwise Systems: ”QuickUSB User’s-Guide”,

http://www.bitwisesys.com, Version 1.30, March , 2003

[9] Universal Serial Bus: ”USB 2.0 Specification”,

http://www.usb.org/developers/docs/, April 2002

[10] National Instruments: ”Why Learn LabVIEW?”,

http://zone.ni.com/devzone/conceptd.nsf/webmain/

B149ABA93A241CFE86256EE600648668, April 2005

[11] National Instruments: ”Benchmark Execution Speed of LabVIEW Applica-
tions”,

http://zone.ni.com/devzone/conceptd.nsf/webmain/

DC9B6DD177D91D6286256C9400733D7F, April 2005

67

http://www.microtronix.com
http://www.bitwisesys.com
http://www.usb.org/developers/docs/
http://zone.ni.com/devzone/conceptd.nsf/webmain/B149ABA93A241CFE86256EE600648668
http://zone.ni.com/devzone/conceptd.nsf/webmain/B149ABA93A241CFE86256EE600648668
http://zone.ni.com/devzone/conceptd.nsf/webmain/DC9B6DD177D91D6286256C9400733D7F
http://zone.ni.com/devzone/conceptd.nsf/webmain/DC9B6DD177D91D6286256C9400733D7F

Bibliography

[12] Christian Gindorf ”Datentypen in LabVIEW”,

http://www.christianhamp.privat.t-online.de/LabVIEW/

Datentypenubersicht/datentypenubersicht.html, Januar 2004

68

http://www.christianhamp.privat.t-online.de/LabVIEW/Datentypenubersicht/datentypenubersicht.html
http://www.christianhamp.privat.t-online.de/LabVIEW/Datentypenubersicht/datentypenubersicht.html

9. Appendix

69

A. VHDL-Code and
Quartus-Projectfiles

A.1. Project Package
library ieee;
use ieee.std_logic_1164.all;
--package-declaration types, subtypes, constants,
package proj_pak is
--Type declaration----------------
subtype sl is std_logic; -- alias for std_logic;
subtype slv is std_logic_vector; -- alias for std_logic_vector;
end proj_pak;

package body proj_pak is
end package body;

A.2. Testmodule
-- librarys ----------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.proj_pak.all;

entity testmodul_0_to_5 is

Port (
-- clk
clk_40Mhz : in sl;
reset_int : in sl;
-- output signals
data_CRC : out slv(15 downto 0);
nRead : out sl -- read CRC
);

end testmodul_0_to_5;

architecture struct of testmodul_0_to_5 is
-- signals

signal cnt : integer ;
signal cnt_data : slv(15 downto 0) ;
signal nread_ind : sl ;

70

A.3. WRITE DATA

signal pkg_cnt : integer;
signal nread_ind_shift : slv(1 downto 0);
begin -- struct

process_nRead : process(clk_40Mhz, nread_ind) is
begin
if rising_edge(clk_40Mhz) then
nRead <= nRead_ind;
if cnt = 0 then -- count up
nRead_ind <= ’0’;
cnt <= cnt + 1;

elsif cnt = 5 then -- count from 0 to 5
nRead_ind <= ’1’;
cnt <= cnt + 1;

elsif cnt >= 40000 then -- 40000 every every 1msec a package
cnt <= 0; -- reset counter

else -- count up,
cnt <= cnt + 1;

end if;
end if;

end process process_nRead;

data_incr : process(clk_40Mhz, nread_ind, cnt_data) is
begin
if rising_edge(clk_40Mhz) then
if nRead_ind = ’0’ then
cnt_data <= cnt_data + ’1’;

elsif nread_ind =’1’ then
cnt_data <= X"ffff";

end if;
end if;

data_CRC <= cnt_data;
end process data_incr;
end struct;

A.3. write data
entity wr_data is

Port (
-- clk
clk_40Mhz : in sl;
-- input signals
nRead_en : in sl;
data_IN : in slv(15 downto 0);

-- output signals
wr_data : out slv(15 downto 0);
wr_address : out slv(4 downto 0) := "11111";
write_en : out sl;

71

A.3. WRITE DATA

write_done : out sl

);
end wr_data;

architecture struct of wr_data is
-- signals
signal write_done_int : sl;
signal q1 : sl ;
signal q2 : sl ;
signal q3 : sl ;
signal buf : slv(15 downto 0) := (others => ’1’);
signal wr_address_cnt : slv(4 downto 0) := "11111";
signal write_enable_int : sl;
begin -- struct

process_write_M512 : process (clk_40Mhz) is
begin
if rising_edge(clk_40Mhz) then
wr_address <= wr_address_cnt;
if nRead_en = ’0’ then -- data available
wr_address_cnt <= wr_address_cnt + 1; -- increment address counter
write_enable_int <= ’1’; -- write data into M512

if wr_address_cnt = 31 then
write_done_int <= ’1’; -- write done
wr_address <= (others => ’1’) ; -- reset counter

else
write_done_int <= ’0’; -- write in progress

end if;

else
wr_address_cnt <= (others => ’1’) ; -- reset counter
write_enable_int <= ’0’; -- dont write data
write_done_int <= ’1’; -- write done

end if;
end if;

end process process_write_M512;

delay_data : process(clk_40Mhz) is
begin -- pull data through modul to delay it for 1 cycle,
if rising_edge(clk_40Mhz) then
buf <= data_in;
wr_data <= buf;

end if;
end process delay_data;

delay_write_en : process(clk_40Mhz) is
begin -- delay write_en for 1 cycle
if rising_edge(clk_40Mhz) then

72

A.4. READ DATA

write_en <= write_enable_int;
end if;

end process delay_write_en;

delay_write_done : process(clk_40Mhz) is
begin -- delay signal write_done for 3 cycles
if rising_edge(clk_40Mhz) then

q1 <= write_done_int;
q2 <= q1;
q3 <= q2;
write_done <= q3;

end if;
end process delay_write_done;

end struct;

A.4. read data
entity rd_data is
Port (

-- clk
clk_40Mhz : in sl;
clk_48Mhz : in sl;
n_reset : in sl;
-- input signals
write_en : in sl ;
-- output signals
rd_address : out slv(4 downto 0) := "11111";
read_en : out sl;
write_FIFO : out sl
--tb_START, tb_STOP : out sl;
--tb_shiftreg : out slv(1 downto 0);
--tb_cnt : out slv(6 downto 0)
);

end rd_data;

architecture struct of rd_data is

signal shiftreg : slv(1 downto 0);
signal START : sl ;
signal cnt : slv(6 downto 0) ;
signal STOP : sl;

-- shiftreg for read_en and rd_address
signal read_en_int :sl ;
signal q1,q2,q3 : sl;
signal rd_address_int : slv(4 downto 0);
signal z1,z2,z3 : slv(4 downto 0);

73

A.4. READ DATA

-- shiftreg for write_FIFO
signal w1,w2,w3 : sl;

begin --struct
--
--0
--tb_START <= START;
--tb_STOP <= STOP;
--tb_shiftreg <= shiftreg;
--tb_cnt <= cnt;

shiftreg_write_en : process(clk_40Mhz) is

begin
if rising_edge(clk_40Mhz) then

shiftreg <= shiftreg(0) & write_en ;
end if;

end process shiftreg_write_en;
--

--
--1

Startsignal : process(clk_40Mhz) is
begin
if rising_edge(clk_40Mhz) then
case shiftreg is

when "10" =>
START <= ’1’;

when "01" =>
START <= ’0’;

when others =>
START <= START;

end case;
end if;

end process startsignal;
--

--
--2
counter : process(clk_48Mhz) is
begin
if rising_edge(clk_48Mhz) then
if START = ’1’ then
if cnt < 38 then
cnt <= cnt + 1;

else
cnt <= cnt;

end if;
else

74

A.4. READ DATA

cnt <= (others => ’0’);
end if;

end if;
end process counter;

--3
STOPsignal : process(cnt) is
begin
if cnt < 32 then -- cnt from 0 to 31, == 32 cycles
STOP <= ’0’;

else
STOP <= ’1’;

end if;
end process STOPsignal;
--

--
--4
--ausgaenge synchron mit 48Mhz
outpt_decoder : process(clk_48Mhz, START, STOP, cnt) is
begin

if rising_edge(clk_48Mhz) then
if (START and (not STOP)) = ’1’ then
read_en_int <= ’1’;
rd_address_int <= cnt(4 downto 0);

else
read_en_int <= ’0’;
rd_address_int <= (others => ’0’);

end if;
end if;

end process outpt_decoder;
--

--
--5
shift_read_en : process (clk_48Mhz) is
begin
if rising_edge(clk_48Mhz) then
if n_reset = ’1’ then
q1 <= read_en_int;
q2 <= q1;
q3 <= q2;
read_en <= q3;

else
q1 <= ’0’;
q2 <= ’0’;
q3 <= ’0’;
read_en <= ’0’;

75

A.4. READ DATA

end if;
end if;

end process shift_read_en;

shift_address : process (clk_48Mhz) is
begin
if rising_edge(clk_48Mhz) then
if n_reset = ’1’ then
z1 <= rd_address_int;
z2 <= z1;
z3 <= z2;
rd_address <= z3;

else
z1 <= (others => ’0’);
z2 <= (others => ’0’);
z3 <= (others => ’0’);
rd_address <= (others => ’0’);

end if;
end if;

end process shift_address;

-- For FIFO write_FIFO must be synchronous with the data
-- => data 2cycles delay -->
shift_write_FIFO : process (clk_48Mhz) is
begin
if rising_edge(clk_48Mhz) then
if n_reset = ’1’ then
w1 <= q3;
w2 <= w1;
write_FIFO <= w2;

else
w1 <= ’0’;
w2 <= ’0’;
w3 <= ’0’;
write_FIFO <= ’0’;

end if;
end if;

end process shift_write_FIFO;

end struct;

76

A.5. QUARTUS PROJECT VERSION 1 : DUAL-CLOCK MEMORY AND
FIFO

A.5. Quartus Project version 1 : dual-clock
Memory and FIFO

D
at

e:
 A

pr
il

, 2
00

5
v5

.b
df

*
P

ro
je

ct
: v

5

P
ag

e
1

of
 1

R
ev

is
io

n:

Lo
ca

tio
n

P
IN

_A
G

3
O

pt
io

n
Va

lu
e

U
S

B
_w

rit
e_

en
O

U
TP

U
T

Lo
ca

tio
n

P
IN

_Y
9

Lo
ca

tio
n

P
IN

_A
F5

Lo
ca

tio
n

P
IN

_A
E

4
Lo

ca
tio

n
P

IN
_A

H
5

Lo
ca

tio
n

P
IN

_A
F4

Lo
ca

tio
n

P
IN

_A
G

4
Lo

ca
tio

n
P

IN
_A

H
3

Lo
ca

tio
n

P
IN

_A
C

5
Lo

ca
tio

n
P

IN
_V

9
Lo

ca
tio

n
P

IN
_V

10
Lo

ca
tio

n
P

IN
_Y

4
Lo

ca
tio

n
P

IN
_Y

3
Lo

ca
tio

n
P

IN
_U

7
Lo

ca
tio

n
P

IN
_U

8
Lo

ca
tio

n
P

IN
_Y

2
Lo

ca
tio

n
P

IN
_Y

1

O
pt

io
n

Va
lu

e
U

S
B

_D
A

TA
[1

5.
.0

]
O

U
TP

U
T

cl
k_

40
M

hz

nR
ea

d_
en

da
ta

_I
N

[1
5.

.0
]

w
r_

da
ta

[1
5.

.0
]

w
r_

ad
dr

es
s[

4.
.0

]

w
rit

e_
en

w
r_

da
ta

in
st

1

cl
k_

40
M

hz
nR

ea
d

da
ta

_C
R

C
[1

5.
.0

]

te
st

m
od

ul

in
st

512 Bit(s)
RAM

B
lo

ck
 T

yp
e:

 M
51

2

da
ta

[1
5.

.0
]

w
ra

dd
re

ss
[4

..0
]

w
re

n

rd
ad

dr
es

s[
4.

.0
]

rd
en

w
rc

lo
ck

rd
cl

oc
k

q[
15

..0
]

M
51

2

in
st

10

LC
E

LL

nR
ea

d_
L

LC
E

LL

da
ta

_C
R

C
_L

LC
E

LL

w
r_

FI
FO

_L

LC
E

LL

M
51

2_
da

ta
_o

ut
_L

LC
E

LL

re
ad

_f
ifo

_e
n_

L

LC
E

LL

sc
lr_

fif
o_

L

LC
E

LL

fif
o_

al
m

os
t_

fu
ll_

L

LC
E

LL

M
51

2_
w

rit
e_

en
_L

LC
E

LL

M
51

2_
w

r_
ad

dr
es

s_
L

LC
E

LL

M
51

2_
w

r_
da

ta
_L

LC
E

LL

M
51

2_
rd

_a
dd

re
ss

_L

LC
E

LL

M
51

2_
re

ad
_e

n_
L

cl
k_

48
M

hz

al
m

os
t_

fu
ll

sc
lr_

fif
o

FI
FO

_r
ea

d_
en

U
S

B
_w

rit
e_

en

FI
FO

_c
on

tro
l

in
st

4

LC
E

LL

U
S

B
_w

rit
e_

en
_L

LC
E

LL

U
S

B
_D

A
TA

_L

cl
k_

40
M

hz

cl
k_

48
M

hz

w
rit

e_
en

rd
_a

dd
re

ss
[4

..0
]

re
ad

_e
n

w
rit

e_
FI

FO

rd
_d

at
a

in
st

8

cl
k_

40
M

hz
_i

nt

cl
k_

48
M

hz
_i

nt

cl
k_

40
M

hz
_i

nt

cl
k_

48
M

hz
_i

nt

cl
k_

40
M

hz
_i

nt

cl
k_

40
M

hz
_i

nt

fif
o_

al
m

os
t_

fu
ll

sc
lr_

fif
o re

ad
_f

ifo
_e

n

cl
k_

48
M

hz
_i

nt

cl
k_

48
M

hz
_i

nt

da
ta

_F
IF

O

da
ta

_F
IF

O

w
r_

FI
FO

w
r_

FI
FO

16
 b

its
 x

 1
63

84
 w

or
ds

al
m

os
t_

fu
ll

at
 1

00
00

da
ta

[1
5.

.0
]

w
rr

eq
rd

re
q

cl
oc

k

sc
lr

q[
15

..0
]

al
m

os
t_

fu
ll

lp
m

_f
ifo

0

in
st

9

Figure A.1.: FPGA Version 1 : dual-clock Memory and FIFO

77

A.6. QUARTUS PROJECT VERSION 2 : DUAL-CLOCK FIFO

A.6. Quartus Project version 2 : dual-clock FIFO
D

at
e:

 A
pr

il
, 2

00
5

v5
.b

df
*

P
ro

je
ct

: v
5

P
ag

e
1

of
 1

R
ev

is
io

n:

Lo
ca

tio
n

P
IN

_A
G

5
O

pt
io

n
Va

lu
e

V
C

C
R

E
N

IN
P

U
T

Lo
ca

tio
n

P
IN

_F
1

O
pt

io
n

Va
lu

e

V
C

C
S

w
itc

h1
IN

P
U

T

Lo
ca

tio
n

P
IN

_Y
9

Lo
ca

tio
n

P
IN

_A
F5

Lo
ca

tio
n

P
IN

_A
E

4
Lo

ca
tio

n
P

IN
_A

H
5

Lo
ca

tio
n

P
IN

_A
F4

Lo
ca

tio
n

P
IN

_A
G

4
Lo

ca
tio

n
P

IN
_A

H
3

Lo
ca

tio
n

P
IN

_A
C

5
Lo

ca
tio

n
P

IN
_V

9
Lo

ca
tio

n
P

IN
_V

10
Lo

ca
tio

n
P

IN
_Y

4
Lo

ca
tio

n
P

IN
_Y

3
Lo

ca
tio

n
P

IN
_U

7
Lo

ca
tio

n
P

IN
_U

8
Lo

ca
tio

n
P

IN
_Y

2
Lo

ca
tio

n
P

IN
_Y

1

O
pt

io
n

Va
lu

e

U
S

B
_D

A
TA

[1
5.

.0
]

O
U

TP
U

T

Lo
ca

tio
n

P
IN

_A
E

8
O

pt
io

n
Va

lu
e FI

FO
_a

lm
os

t_
fu

ll
O

U
TP

U
T

LC
E

LL

L_
da

ta
_C

R
C

LC
E

LL

L_
nR

ea
d_

C
R

C

LC
E

LL

L_
FI

FO
_A

C
LR

LC
E

LL

L_
al

m
os

t_
fu

ll

N
O

T

in
st

8

da
ta

1
da

ta
0

se
lre
su

lt

nR
ea

d_
m

ux

in
st

5

pb cl
k_

40
M

hz

pb
_d

eb
ou

nc
ed

si
ng

le
_p

ul
se

de
bo

un
ce

in
st

13

W
ID

TH
16

Pa
ra

m
et

er
Va

lu
e

0 1
da

ta
b[

]

se
l

da
ta

a[
]

re
su

lt[
]

B
U

S
M

U
X

in
st

15

16
 b

its
 x

 1
63

84
 w

or
ds

da
ta

[1
5.

.0
]

w
rr

eq
w

rc
lk

rd
re

q
rd

cl
k

ac
lr

w
ru

se
dw

[1
3.

.0
]

q[
15

..0
]

lp
m

_f
ifo

_d
c1

63
84

in
st

18

N
O

T

in
st

20

cl
k_

40
M

hz

us
ed

_w
id

th
[1

3.
.0

]

al
m

os
t_

fu
ll

Fi
fo

_a
lm

os
t_

fu
ll

in
st

9

cl
k_

40
M

hz

re
se

t_
in

t

da
ta

_C
R

C
[1

5.
.0

]

nR
ea

d

te
st

m
od

ul
_0

_t
o_

5

in
st

da
ta

_C
R

C
[1

5.
.0

]

nR
ea

d_
C

R
C

cl
k_

40
M

hz
_i

nt

da
ta

[1
5.

.0
]

R
ea

d_
C

R
C

da
ta

cl
k_

40
M

hz
_i

nt

re
se

t_
in

t

S
w

itc
h1

 c
ha

ng
es

 b
et

w
ee

n
da

ta
fro

m
 th

e
C

R
C

 o
r f

ro
m

 th
e

te
st

m
od

ul

cl
k_

48
M

hz
_i

nt

da
ta

[1
5.

.0
]

R
ea

d_
C

R
C

da
ta

cl
k_

40
M

hz
_i

nt

cl
k_

48
M

hz
_i

nt

re
se

t_
in

t

Figure A.2.: FPGA Version 2 : dual-clock FIFO

78

A.7. SCHEMATIC : PLL

A.7. Schematic : PLL
D

at
e:

 A
pr

il
, 2

00
5

v5
.b

df
P

ro
je

ct
: v

5

P
ag

e
1

of
 1

R
ev

is
io

n:

Lo
ca

tio
n

P
IN

_P
25

O
p

ti
o

n
V

al
u

e

V
C

C
cl

k_
40

M
hz

IN
P

U
T

Lo
ca

tio
n

P
IN

_A
D

14
O

p
ti

o
n

V
al

u
e

V
C

C
IF

C
LK

IN
P

U
T

LC
E

LL

L_
cl

k_
48

_i
nt

LC
E

LL

L_
cl

k_
40

_i
nt

S
tr

at
ix

in
cl

k0
 fr

eq
ue

nc
y:

 4
0.

00
0

M
H

z

O
pe

ra
tio

n
M

od
e:

 N
or

m
al

C
lk

R

at
io

P
h

(d
g)

D
C

 (
%

)

c0
1/

1
0.

00
50

.0
0

in
cl

k0
c0

al
tp

ll_
on

bo
ar

dc
lk

in
st

12

S
tr

at
ix

in
cl

k0
 fr

eq
ue

nc
y:

 4
8.

00
0

M
H

z

O
pe

ra
tio

n
M

od
e:

 N
or

m
al

C
lk

R

at
io

P
h

(d
g)

D
C

 (
%

)

c0
1/

1
0.

00
50

.0
0

in
cl

k0
c0

al
tp

ll_
ifc

lk

in
st

4

cl
k_

40
M

hz
_i

nt

cl
k_

48
M

hz
_i

nt

Figure A.3.: FPGA : PLL

79

A.8. FINAL STRUCTUR OF QUARTUS PROGRAM(ASSEMBLED BY
CHRISTOS ZAMANTZAS)

A.8. Final structur of Quartus program(assembled
by Christos Zamantzas)

80

File Date: April 29, 2005 Print Date: May , 2005 Project: BLMTC for Booster (v1) with USB output (v5)

Revision: 3

clk_40Mhz_int

clk_40Mhz_int

Read_CRCRead_CRC

reset_int

start_new

cnt_ReadData[2]

cnt_ReadData[15..0]

reset_int

clk_48Mhz_int

reset_int

clk_40Mhz_int

clk_40Mhz_int

Switch4

clk_40Mhz_int

clk_48Mhz_int

wrreq

start_new
rdad[7..0]

clk_40Mhz_int

clk_40Mhz_int

sel_data

data[15..0]

DataA[15..0]

sel_data

reset_intclk_40Mhz_int

data_CRC[15..0]

clk_40Mhz_int

ClkTlkA

sel_data

clk_fifo_in

clk_40Mhz_int

sel_data

StatusA[1]

Read_CRC
wrreq

clk_48Mhz_int

sel_data

clk_48Mhz_int

REN

reset_intreset_int

REN

clk_fifo_in

wrreq

data[15..0]

Pushbutton 1 on FPGABoard

Output Clk_out an QuickUSB IFCLK

LED_2 indicates data on the bus

if Switch2 is 0 then no write to mem
if Switch2 is 1 then write posible

if Switch3 is 1 then CRCs compared
if Switch3 is 0 then signal A is output

Switch 4 changes the indicator LED_1
(clk_40Mhz and clk_48Mhz Status)

the Testmodul data comes through

 the CRC data is passed through

USB Module Inputs

Clock Signals LEDs on Microtronix

USB Module Outputs

PLLs LED drivers

BLMTC Data Analysis Block

Switch 4 changes the indicator LED_1

if Switch1 is closed, (value 0) then

if Switch1 is open (value 1) then

Swithes on Microtronix

Signals from Mezzanine

USB (with TEST option) Interface Logic

40MWord / 64 = 625kWord = 1.25Mbytes/s

When sel_data='1' threshlod = 1000 else 10000

clk_40Mhz_int

data_CRC[15..0]

rdad[7..0]

ClkTlkA

ClkTlkB

clk_40Mhz_int

reset_int

start_new

VCC
clk_40Mhz INPUT

VCC
nReset INPUT

VCC
REN INPUT

VCC
IFCLK INPUT

VCC
Switch1 INPUT

VCC
Switch4 INPUT

VCC
StatusA[1..0] INPUT

VCC
DataA[15..0] INPUT

VCC
StatusB[1..0] INPUT

VCC
DataB[15..0] INPUT

VCC
Switch3 INPUT

VCC
ClkTlkA INPUT

VCC
Switch2 INPUT

VCC
ClkTlkB INPUT

FIFO_almost_fullOUTPUT

LED_1OUTPUT

LED_2OUTPUT

clk

reset

led

STATUS

inst2

clk

reset

led

STATUS

inst3

data1
data0

sel

result

nRead_mux

inst5

pb

clk_40Mhz

pb_debounced

single_pulse

debounce

inst7

pb

clk_40Mhz

pb_debounced

single_pulse

debounce

inst13

data1
data0

sel

result

LED_mux

inst1

pb

clk_40Mhz

pb_debounced

single_pulse

debounce

inst14

up counter
clock

cnt_en
q[15..0]

lpm_counter_data_led

inst10

Stratix

inclk0 frequency: 48.000 MHz
Operation Mode: Normal

Clk Ratio Ph (dg) DC (%)
c0 1/1 0.00 50.00

inclk0 c0

altpll_ifclk

inst4

0

1datab[]

sel

dataa[]
result[]

BUSMUX

inst15

16 bits x 16384 words

data[15..0]

wrreq
wrclk

rdreq
rdclk

aclr

wrusedw[13..0]

q[15..0]

lpm_fifo_dc16384

inst18

CLRN

D
PRN

Q

DFF

inst17

up counter
sclr

clock

cnt_en

q[7..0]
cout

addr_counter

inst16

OR2

inst19

NOT

inst21
NOT

inst22

Stratix

inclk0 frequency: 40.000 MHz
Operation Mode: Normal

Clk Ratio Ph (dg) DC (%)
c0 1/1 0.00 50.00

inclk0 c0

pll_general

inst20

q[15..0]

clk

ren

aclr

clk_Div2

Output[15..0]

Send8BitsData

inst24

up counter
clock

q[15..0]

testcount

inst6

up counter
clock

q[5..0]
cout

count_6bit

inst

data1
data0

sel

result

nRead_mux

inst8

clk_40Mhz

used_width[13..0]

user_threshold

almost_full

Fifo_almost_full

inst9

clkA
clkB
clk
reset
StatusA[1..0]
DataA[15..0]
StatusB[1..0]
DataB[15..0]
VMErd_add[7..0]
VME_clk
switch_noCRC
switch_noWR

VME_max[15..0]
New_Data

blmtc_reduced_v1

inst23

USB_DATA[15..0]OUTPUT

WIDTH 16
Parameter Value

B. QuickUSB

82

QUSB2

April 11, 2002 1 Preliminary

Product Overview
The Universal Serial Bus is a popular computer
interface that has become the de-facto standard
interface for PC peripherals. Now, Hi-Speed
USB 2.0 is the new standard in PC peripheral
connectivity. With a speed of 480Mbps, USB
2.0 is up to 40 times faster than the 12Mbps
USB 1.1 most computers use today. It uses the
same type cabling and is backward compatible
with USB 1.1.
Implementing a USB peripheral typically
requires in-depth knowledge of the USB
protocol, a considerable firmware and software
development effort and rigorous compliance
testing. But now there’s an alternative.
The QuickUSB™ QUSB2 Plug-In Module makes
adding Hi-Speed USB 2.0 to new or existing
products quick by integrating all the hardware,
firmware and software needed to implement a
general-purpose USB endpoint as an easy-to-
use plug-in module. The QuickUSB™ Plug-In
Module also includes the QuickUSB™ Library.
The QuickUSB plug-in module contains
hardware parallel and serial ports that are
connected to circuitry in the peripheral. The
QuickUSB library provides user-callable
software functions that transfer data to and from
the hardware ports over the USB. So the
designer gets multiple ports of flexible, high-
speed USB connectivity and no knowledge of
USB is required.

Schematic Symbol

QuickUSB

QUSB2

porta[7..0]

portb[7..0]

portc[7..0]

portd[7..0]

porte[7..0] scl

sca

reset_b

txd_0

rxd_0

txd_1

rxd_1

clkout

ifclk

gnd

+5V

txd0

rxd0

txd1

rxd1

int5

ctl[5..0]

rdy[5..0]

int4

t1

t0

wakeup_b

Figure 1 – QUSB2 Symbol

Functional Description

The QuickUSB Plug-In Module
The QuickUSB QUSB2 Plug-In Module is a 2” x
1 ½” circuit board that implements a bus-
powered Hi-speed USB 2.0 endpoint terminating
in a single 80-pin target interface connector.
The target interface consists of:

• One 8 or 16-bit high-speed parallel port

• Up to three general-purpose 8-bit parallel
I/O ports

• Two RS-232 ports

• One I
2
C port

• One soft SPI port or FPGA configuration
port

High-Speed Parallel
The high-speed parallel port is configurable as
an 8 or 16 bit synchronous parallel port. It
delivers a sustained data rate of up to 12 MB/s
and a burst rate of up to 48MB/s for packets up
to 512 bytes long. The high-speed interface
consists of the data port FD[15:0], control lines
CMD_DATA, REN, WEN and GPIFADR [8:0].
The port can be used as a multiplexed
command/data bus by decoding CMD_DATA
(CMD = 0, DATA = 1 in the target logic. Reads
are indicated by REN = 1 and writes are
indicated by WEN = 1. If the address bus is
configured to be active, concurrent with reads or
writes the GPIFADR bus contains the address of
each data element read from or written to FD
[15:0].

General Purpose Parallel I/O
General purpose I/O pins must be configured to
indicate whether they are being used as input or
output pins. This is accomplished using library
calls documented in the QuickUSB User’s
Guide.
The parallel ports have multiple functions and
may not be available if alternate functions are
enabled. The general-purpose I/O ports are
ports A, C & E. Ports B & D are reserved for the
High-Speed Parallel port. The Port E alternate
function is FPGA configuration and the soft SPI
port. If these alternate functions are used, port
E is reserved. Otherwise, port E can be used as
general-purpose I/O.

RS-232
The module has two RS-232 ports with a
configurable baud rate. Both ports use the

QUSB2

April 11, 2002 2 Preliminary

same baud rate. These interrupt-driven ports
internally buffer data as it arrives and when
queried return the contents of the internal buffer.
The interrupt buffer depth is 32 characters per
port.

I2C
An I2C compatible port is included on the
QuickUSB module. The port is a bus master
only. Address 1 is reserved for on-board
functions. The QuickUSB library provides
functions to write and read blocks of data to and
from I2C peripherals.

SPI
The module supports SPI peripherals through a
‘soft’ SPI port, which uses pins on port E. The
pins MOSI, SCK, MISO and nSS are shared
with the FPGA configuration function and will not
interfere with each other if the SPI peripherals
only drive the MISO when nSS is asserted
(nSS=0).

FPGA Configuration
The QuickUSB Plug-In Module can program
SRAM-based Altera programmable logic devices
using five pins of port E. When designing your
peripheral to use this feature, consult the ‘PS
Configuration with a Microprocessor’ section of
Altera Application Note 116, ‘Configuring SRAM-
Based LUT Devices’. This document specifies
the circuitry needed to configure an Altera
device with a microcontroller. The QuickUSB
module provides the DCLK, DATA0, nCE,
nCONFIG, nSTATUS and CONF_DONE signals
required to configure Altera devices in passive-
serial mode. If more than one Altera device
must be configured over the interface, the
devices should be ‘daisy-chained’ and the
programming files combined into a single ‘RBF’
file. Consult AN116 for details on this
configuration or contact Bitwise Systems.

The QuickUSB Library
The QuickUSB™ Library is included with the
QUSB2 and provides DLL and C library
interfaces to the QuickUSB Plug-in Module. The
QuickUSB Library hides the complexity of USB
2.0 behind a port-based programmer’s interface.
A complete description of each library function is
provided in the QuickUSB™ User’s Guide

Contact
For pricing and other information contact:

Bitwise Systems
697 Via Miguel

Santa Barbara, CA 93111
Phone (805) 683-6469

Fax (805) 683-6469
www.bitwisesys.com

sales@bitwisesys.com

QUSB2

April 11, 2002 3 Preliminary

Pin Descriptions

Pin Name Dir Description Pin Name Dir Description

1 GND N/A Ground 2 +5V N/A Unregulated +5V from the
USB bus (300mA total)

3 PA0 I/O Port A, Bit 0 4 RESET_B OD FX2 reset, Active low.

5 PA1 I/O Port A, Bit 1 6 CLKOUT Output 48MHz CPU clock

7 PA2 I/O Port A, Bit 2 8 IFCLK Output 48MHz GPIO clock

9 PA3 I/O Port A, Bit 3 10 INT4 Input 8051 INT4 IRQ. Active high,
edge sensitive

11 PA4 I/O Port A, Bit 4 12 RXD_0 Input Serial Port 0 RS-232 RxD

13 PA5 I/O Port A, Bit 5 14 TXD_0 Output Serial Port 0 RS-232 TxD

15 PA6 I/O Port A, Bit 6 16 TXD_1 Output Serial Port 1 RS-232 TxD

17 PA7 I/O Port A, Bit 7 18 RXD_1 Input Serial Port 1 RS-232 RxD

19 GND N/A Ground 20 +5V N/A Unregulated +5V from the
USB bus (300mA total)

21 PB0 I/O Port B, Bit 0 / FD0 22 CTL0 Output GPIF ctl out 0 / CMD_DATA

23 PB1 I/O Port B, Bit 1 / FD1 24 CTL1 Output GPIF ctl out 1 / REN

25 PB2 I/O Port B, Bit 2 / FD2 26 CTL2 Output GPIF ctl out 2 / WEN

27 PB3 I/O Port B, Bit 3 / FD3 28 CTL3 Output GPIF ctl out 3

29 PB4 I/O Port B, Bit 4 / FD4 30 CTL4 Output GPIF ctl out 4

31 PB5 I/O Port B, Bit 5 / FD5 32 CTL5 Output GPIF ctl out 5

33 PB6 I/O Port B, Bit 6 / FD6 34 RXD0 Input Serial Port 0 TTL RxD (Do not
use if U1 is populated)

35 PB7 I/O Port B, Bit 7 / FD7 36 TXD0 Output Serial Port 0 TTL RxD (Do not
use if U1 is populated)

37 GND N/A Ground 38 +5V N/A Unregulated +5V from the
USB bus (300mA total)

39 PC0 I/O Port C, Bit 0 / GPIFADR0 40 RDY0 Input GPIF input signal 0

41 PC1 I/O Port C, Bit 1 / GPIFADR1 42 RDY1 Input GPIF input signal 1

43 PC2 I/O Port C, Bit 2 / GPIFADR2 44 RDY2 Input GPIF input signal 2

45 PC3 I/O Port C, Bit 3 / GPIFADR3 46 RDY3 Input GPIF input signal 3

47 PC4 I/O Port C, Bit 4 / GPIFADR4 48 RDY4 Input GPIF input signal 4

49 PC5 I/O Port C, Bit 5 / GPIFADR5 50 RDY5 Input GPIF input signal 5

51 PC6 I/O Port C, Bit 6 / GPIFADR6 52 RXD1 Input Serial Port 1 TTL RxD (Do not
use if U1 is populated)

53 PC7 I/O Port C, Bit 7 / GPIFADR7 54 TXD1 Output Serial Port 1 TTL RxD (Do not
use if U1 is populated)

55 GND N/A Ground 56 +5V N/A Unregulated +5V from the
USB bus (300mA total)

57 PD0 I/O Port D, Bit 0 / FD8 58 PE0 I/O Port E, Bit 0 / DATA0 / MOSI

59 PD1 I/O Port D, Bit 1 / FD9 60 PE1 I/O Port E, Bit 1 / DCLK / SCK

61 PD2 I/O Port D, Bit 2 / FD10 62 PE2 I/O Port E, Bit 2 / nCE

63 PD3 I/O Port D, Bit 3 / FD11 64 PE3 I/O Port E, Bit 3 / nCONFIG

65 PD4 I/O Port D, Bit 4 / FD12 66 PE4 I/O Port E, Bit 4 / nSTATUS

67 PD5 I/O Port D, Bit 5 / FD13 68 PE5 I/O Port E, Bit 5 / CONF_DONE /
MISO (see note)

69 PD6 I/O Port D, Bit 6 / FD14 70 PE6 I/O Port E, Bit 6 / nSS

71 PD7 I/O Port D, Bit 7 / FD15 72 PE7 I/O Port E, Bit 7 / GPIFADR8

73 SCL OD Clock for I2C interface 74 WAKEUP_B Input USB Wakeup. Active low.

75 SDA OD Data for I2C interface 76 INT5_B Input INT5 Interrupt Request.
Active low, edge sensitive

77 T0 Input Input for Timer0 78 T1 Input Input for Timer1

79 GND N/A Ground 80 +5V N/A +5V

Table 1 – QUSB2 Pin Description

QUSB2

April 11, 2002 4 Preliminary

QuickUSB Socket Layout

1750 mils

289 mils

PAD 1

750 mils

Keep out area under Quick USB

157 mils thru, 250 mils pad

125 mils

2000 mils

HIROSE FX8-80P-SV

496 mils

390 mils

125 mils

250 mils

1500 mils

1250 mils

CENTERLINE
INTERFACE
CONNECTOR

Figure 2- QuickUSB Socket Layout

QUD FPGA QUD FPGA
signal J2 (20x2) J21 (20x2) signal J3 (20x2) J24(20x2)

a0 3 3 c0 3 3
a1 5 5 c1 5 5
a2 7 7 c2 7 7
a3 9 9 c3 9 9
a4 11 11 c4 11 11
a5 13 13 c5 13 15
a6 15 15 c6 15 17
a7 17 17 c7 17 19
b0 19 21 d0 19 21

cmd_data 20 28 e0 20 22
b1 21 23 d1 21 23

ren 22 32 e1 22 24
b2 23 25 d2 23 25

wen 24 36 e2 24 26
b3 25 27 d3 25 29
b4 27 29 e3 26 30
b5 29 31 d4 27 31
b6 31 33 e4 28 32
b7 33 35 d5 29 33

gnd 40 40 e5 30 34
d6 31 35
e6 32 36

QUD FPGA d7 33 37
signal J2 (20x2) J22 (10x2) e7 34 38

CLKIN 8 13 gnd 40 40

Cable between Stratix-SantaCruz and QuickUSB

C. LabVIEW

88

Figure C.1.: Labview read-out program without display (developer version)

89

Figure C.2.: Labview read-out program with display during an acquisi-
tion.(developer version)

90

Figure C.3.: Labview read-out program (final version) : front panel

91

Figure C.4.: Labview read-out program (final version) : block diagram

92

C.1. FUNCTIONS IN LABVIEW

C.1. Functions in Labview

find module.vi

This function finds all QuickUSB-modules which are attached to the computer. When this
function is running, for example in a lo

op and a QUD1 is connected, it may take some seconds until it is recognised by the function.
The reason for this is that the computer needs some time to identify every new USB device.
The function returns an array of strings which contains the names of all QUD found on the
system and a boolean variable. This variable indicates if a device is found. It can be used to
terminate a loop calling the find module.vi.

input : no input

output : – modules : Stringarray of all modules attached to the computer. The size of the
array is equal to the amount of modules.

– module found? : Boolean variable. TRUE when a module is found. Can be used
to terminate a loop.

open device.vi

Before a USB-Module can be used, it must be opened. This subVI requires the name of
the QuickUSB-Module and returns the ID2 of the new device. This ID is needed by all other
functions to identify the device.

input : – devName : Contains the name of the module which should be opened.

output : – hDevice : Is a ID number which is used by other functions to identify the module.

– devName : The name of the opened module is passed through the subVI and can
be used in ’close device.vi’.

close device.vi

This SubVI is used to close the USB-Module when it is not used anymore. If the chosen
module cannot be closed, a Message occurs : ”The device ’devName’ cannot be closed.”.

input : – hDevice : device ID-number.

1QuickUSB-Device
2hDevice

93

C.1. FUNCTIONS IN LABVIEW

– devName : the name of the opened module.

output : no output, but a warning occurs if the device cannot be closed.

write settings.vi

Due to the fact that only one setting per loop can be written to the QUD the VI runs a loop of
4 iterations to write each setting to the device. Inside the VI the subVI cluster read settings.vi
is used to prepare the settings for the writing-process.

All Settings of the QUD are saved in a volatile memory. They are not stored,
if the module is not powered! It is necessary to rewrite the settings to the QUD
when it is attached.

input : – hDevice : device ID-number.

– Settings : clustervariable containing the settings : Word/Byte, DataAddress, Auto-
Increment, FIFO-Mode and FPGA-Type.

output : – hDevice : device ID-number.

read settings.vi

Using this vi the actual settings can be read from the QUD. Inside the subVI set-
tings read cluster.vi is used to change the appearance of the settings. settings cluster read.vi
is used to make the settings more readable.

input : – hDevice : device ID-number.

output : – hDevice : device ID-number.

– Settings : clustervariable containing the settings : Word/Byte, DataAddress, Auto-
Increment, FIFO-Mode and FPGA-Type. Refer to chapter 4.1

write settings read.vi

This subVI is used in read settings.vi and converts the return value to an user-readable
indicator.

input : – settings : Arrayform of settings-variable.

output : – Settings cluster : user-friendly format of the Settings-variable.

94

C.1. FUNCTIONS IN LABVIEW

write settings write.vi

To simplify the User Interface this subVI converts a cluster variable to a format which is
used to write the settings to the QUD.

input : – Settings cluster : User-friendly format of the Settings-variable.

output : – address : Address-array of the Settings.

– setting : Array of Settings.

Read port Dir.vi

Each Bit of the General Purpose IO-ports (port A, port C and port E) can be configured
either as input or as output. port B and port D are reserved for the High-Speed Parallel port.
This subVI reads the current direction of the bits of the indicated port. (0 = input, 1 = output)

input : – hDevice : device ID-number.

– port : number of port. 0 → A, 2 → C, 4 → E

output : – hDevice : device ID-number.

– direction : direction of port. (0 = input, 1 = output)

Write port Dir.vi

With this subVI all bits of the General Purpose IO-ports can be configured as either as
input or as output. The direction of a bit or a port is controlled by the variable direction in
the input-parameter port settings. The binary value 1 indicates an output and the value 0 an
input.

e.g.: To configure the whole port as Output the Cluster-variable port settings must be set
to 0xFF (0b11111111). The value 0xF0 (0b11110000) configures the upper 4 bit of the port as
output and the lower 4 bit as input.

input : – hDevice : device ID-number.

– port settings : Cluster-variable containing the port address and the direction.

output : – hDevice : device ID-number.

U8Array 2 bit.vi
This subVI returns a single boolean variable (true or false) from an U8Array. It can be used
in combination with the VI read port.vi to get the boolean value of one pin on the QUD.

95

C.1. FUNCTIONS IN LABVIEW

input : – U8 Array : binary data from the General Purpose ports.

– Index of array : usually 0 (for the first array), but it is also possible to read more
than one value from the ports. (maximum length is 64 bytes)

– Index of byte : This values determines which bit of the byte is requested. (0 for
LSB3, 7 for MSB4)

output : – bit : boolean-variable

Read port.vi
To read one of the General Purpose ports they must be configured as input first. This VI
returns the value of the selected port from the QUD. The port and the amount of bytes to read
from it are selected by the inputsignal RD port settings.

input : – hDevice : device ID-number.

– Rd port settings : cluster-variable including the port address (0 → A, 2 → C, 4 →
E) and the lenght of bytes to read. The maximum amount of bytes which can be
transmitted at once is 64. [8].

output : – hDevice : device ID-number.

– Read Port Data : Array of unsigned 8bit integer containing the value of the port.

Write port.vi
This VI is used to write values to the General Purpose IO ports of the QUD. Before it can be
used, the used IO pins must be configured as Output using the VI Write port Dir.vi.

input : – hDevice : device ID-number.

– address data : cluster-variable containing the port address (0 → A, 2 → C, 4 → E)
and an array of unsigned 8bit integer containing the data. The maximum size of
the array is 64. [8].

output : – hDevice : device ID-number.

Read data.vi
To receive data from the HSPP it must be configured either as slave or as master. (please refer
to chapter 4.1 for more details to the HSPP settings.) Then the data can be read using this
VI. When using the whole 16 bits from the HSPP, the data arrives in two stages. Because the
datatype of the data-variable is an 8bit integer, the first byte arriving is the lower byte of the
16bit wide bus. The high byte arrives as second value.

3Least Significant Bit
4Most Significant Bit

96

C.1. FUNCTIONS IN LABVIEW

input : – hDevice : device ID-number.

–

output : – hDevice : device ID-number.

– data : array of data from the HSPP.

U8Array 2 ASCII.vi
If the data consists of ASCII code (readable letters and numbers) this subVI can be used to
change the data to from binary to ASCII character. This subVI is already used inside the VI
read data.vi.

input : – Array : binary data.

output : – ASCII-String : string-variable

modify dataarray.vi
Because the data arrives in two bytes instead of one full word (16 bit) it is necessary to
concatenate these two bytes to one word. This subVI generates out of two 8 bit arrays
(LSByte array, MSByte array) one 16 bit array (array word).

input : – LSByte array : 8 bit variable containing the lower 8 bit of the 16 bit data word.

– MSByte array : 8 bit variable containing the higher 8 bit of the 16 bit data word.

output : – Array word : 16 bit variable excisting of the LSByte array and MSByte array.)

97

	Introduction
	About CERN
	The LHC
	The Beam Loss Monitoring System
	Ionisation chambers
	The readout-electronic for the Beam Loss Monitors
	Transmitting the data from the tunnel to the surface

	Overview of the system
	The data of the BLM-system
	The full data frame
	The reduced data frame
	Conclusion:

	The system on the FPGA
	Connection to the PC
	Processing of the data on the computer

	The FPGA-System
	Version 1 : A dual clock memory and a FIFO
	Changing the clock system
	Storage of the data

	Version 2 : A FIFO can handle it all
	Size of the FPGA-FIFO
	Fill level indication
	How long does it take to fill the FIFO?
	Phase locked loop
	Button debounce
	Switches and buttons in the design
	Led indicators
	Conclusion:

	The USB Interface
	Settings of the QUD
	Width of the HSPP
	HSPP FIFO settings

	Connection between the QuickUSB and the FPGA

	The readout program
	Why use LabVIEW?
	Use the C-Library in LabVIEW
	Structure of the LabVIEW program
	Configure the QUD in LabVIEW
	Read the data from the QUD
	Realisation of the handshake
	The readout procedure
	The data-rate of the system

	Explanation of the Labview Code

	Test measurements
	Test of the version : LOW DATA-RATE
	Measurement setup
	Results
	Conclusion

	Test of the version : HIGH DATA-RATE
	Measurement setup
	High data rate transmission results : with the LabVIEW display
	High data rate transmission results : without the LabVIEW display
	Interpretation of the results

	Conclusions
	FPGA
	QuickUSB
	LabVIEW

	Abbreviations, list of figures and list of tables
	Bibliography
	Appendix
	VHDL-Code and Quartus-Projectfiles
	Project Package
	Testmodule
	write_data
	read_data
	Quartus Project version 1 : dual-clock Memory and FIFO
	Quartus Project version 2 : dual-clock FIFO
	Schematic : PLL
	Final structur of Quartus program(assembled by Christos Zamantzas)

	QuickUSB
	LabVIEW
	Functions in Labview

