Beschleuniger-Betriebsseminar, Grömitz, 28. November 2005

HERA Betrieb 2005

Joachim Keil, DESY (MPY)

Inhalt

- Unterschied zwischen e⁺/e⁻-Betrieb
- Chronologie des Runs 2005
- Strahlströme p und e⁻
- Spezifische und integrierte Luminosität
- Bedingungen f
 ür Experimente
- Elektronen-Polarisation
- Elektronen-Lebensdauer
- Betriebseffizienz und Fehlerstatistik
- Elektronen-Transfer-Effizienz
- Zusammenfassung

Unterschiede zwischen e+ und e--Betrieb

- 1. Orbits in den Wechselwirkungszonen verschieden
 - IPs um 7.5 mm radial nach außen verschoben
 - Elektronen-Quadrupole auf anderen Positionen
 - ⇒ Wiederinbetriebnahme notwendig (Okt./Nov. '04)
 - Mehr und härtere Synchrotronstrahlung (SR) für e⁻-Fall
 - ⇒ Größere Wärmebelastung von Absorbern und Kammern
 - ⇒ Mehr Temperaturalarme
 - ⇒ Höherer SR-Untergrund bei den Experimenten

2. Einfang von pos. geladenen Staubteilchen bei e⁻-Betrieb möglich

- Reduzierte Elektronen-Lebensdauer
- Höherer Elektronen-Background bei den Experimenten

Geometrie der HERA-Wechselwirkungszone

Orbits für e+/p und e-/p in der Wechselwirkungszone

Synchrotronstrahlung in der Wechselwirkungszone für e+/e-

J. Keil: HERA Betrieb 2005

Parameter des HERA-Betriebs 2005

Parameter	Elektronen	Protonen	
Energie E/GeV	27.5	920	
Max. Strom I / mA (Designwerte für n _b =180)	58 / <mark>41</mark>	140 / <mark>102</mark>	
Zahl der Bunche n _b	180 / <mark>63 – 126 – 153</mark>	180 / <mark>60 – 120 – 150</mark>	
Zahl der kollidierenden Bunche n _c	174 / 57 – 114 – 147		
Horizontale Emittanz ε _x / π·nm·rad	20 / < 26	5.1 / 4.7	
Vertikale Emittanz ε _y / π·nm·rad	3.4 / <mark>3.0</mark>	5.1 / <mark>4.7</mark>	
Horizontale Beta-Funktion am IP β_x^* /m	0.63	2.45	
Vertikale Beta-Funktion am IP β_y^*/m	0.26	0.18	
Bunchlänge σ _p /m	0.0103	0.191 / <mark>0.21</mark>	Ĵ
Hourglass-Faktor R	0.924 / 0.913		J
Spezifische Luminosität L _s / 10 ³⁰ cm ⁻² ·s ⁻¹ ·mA ⁻²	1.79 / 1.9 – 2.2		
Luminosität L / 10 ³¹ cm ⁻² ·s ⁻¹	7.44 / 2.5 – 5.1		

Beschränkungen:

Für e⁻: Vakuum, HF Für p : Vorbeschleuniger

Für e–: ohne dynamisches Beam-Beam Beta-Beating ⇔ E. Kot

Für p: Bunch-Verlängerung aufgrund einer longitudinalen Multi-Bunch-Instabilität ⇔ E. Kot

HERA e⁻/p-Betrieb 2005

Chronologie

- Wiederinbetriebnahme HERA mit Strahl: 22. Okt. '04
- WWZ-Magnete auf e⁻-Position:
- Start des Luminositätsbetriebs:
- Betrieb mit Spiegel-Tunes:
- Zurück zu normalen Tunes:
- Beginn des Shutdowns:
- Gesamte Betriebszeit 04/05:

17. Dez.'04

4. Nov. '04

- 25. Mai '05
- \Rightarrow M. Vogt 30. Jun. '05
- 14. Nov. '05
- 333 Tage

Sommer-Shutdown '05 verschoben auf Winter '05/'06

- Ersetzen der Spulen der BU-Magnete
- Einbau des Protonen Multi-Bunch-Feedback-Cavities
- Modifikation von Bälgen in Rotatorstrecken
- Kein Shutdown bis zum Ende der Laufzeit von HERA (Mitte '07)

Maschinenschichten 2004/05

- Nov. 2004
 - Nichtlineare Tabelle beim Rampen der GI-Magnete
 - a Zwischenoptik bei 23 GeV
 - Optik-, Orbit- und Dispersionskorrektur
 - Beam-Based-Alignment in der Wechselwirkungszone
 - Messung der Response-Matrix des El-Wegs
- Dez. 2004
 - Optikmessung HERA-p
 - Beam-Based-Alignment in der Wechselwirkungszone
- Mai 2005
 - Untersuchung eines alternativen Arbeitspunkts (Mirror-Tune)
 - Optik-, Orbit- und Dispersionskorrektur
- Okt.-Nov. 2005
 - Test des (Wavelet-)Tune-Controllers (f
 ür Rampe und Lumi-Run)
- Nov. 2005
 - Messungen zur Orbit-Stabilisierung der Elektronen am IP
 - Injektion bei 7 GeV
 - Messung der Abgeschlossenheit der e-Dump-Beule
 - Untersuchung einer Optik mit kleinerem β_z^* für Protonen

Optik- und Orbitmessung/Korrektur

- Bei Inbetriebnahme 11/04, bei der Umstellung auf Spiegel-Tunes und Helizitätswechsel der e⁻:
 - Messung der Optik von HERA-e und HERA-p (ORM) und empirische Korrektur der Fehler
 ⇒ Rest-Beating Δβ/ β < 10%
 - Messung von Orbit und Dispersion und gleichzeitige Korrektur
 - Erreicht wurden (Sep. 2005):
 x_{rms}= 0.77 mm, y_{rms} = 0.54 mm
 D_{x,rms}= 22 mm, D_{y,rms} = 12 mm
- Außerdem bei Inbetriebnahme 11/04:
 - Beam-Based-Alignment in den Wechselwirkungszonen

Dispersionsmessung in der Zwischenoptik *HEZWIE* bei 23 GeV

Technische Probleme 2004/05

N	Nov. 2004	Überhitzte Spule von Protonen-Quadrupol 'GN NL 20'
2004	Nov. 2004	Erdschluß am Protonen-Quadrupol 'QQ17 OL' innerhalb Cryostat
	Dez. 2004	Vakuumleck in Elektronen-Quadrupol 'GI NR 7' (Durchführung NEG-Pumpe)
2005	Jan. 2005	Erdschluß von Protonen-Quadrupol 'GN NL 23'
	Feb. 2005	Ausfall Kompressorstraße für Südring ⇒ Erwärmung des p-Rings
	Apr. 2005	Kurzschluß in Spule von BU-Magnet SR
	Mai 2005	Vakuumleck in Protonen-Quadrupol 'GM NR 14'
	Jun. 2005	Elektronik-Problem des Netzgerätes von Quadrupol 'GA08 N'
	Jul. 2005	Vakuumleck am Einkoppler an s.I. Cavity ⇒ Ausbau Kryostat
	Sep. 2005	Vakuumleck im Rotator OR (Kühlungsproblem eines Absorbers)
	Sep. 2005	Vakuumleck am Elektronenflansch SR 11 (Dump von 40 mA)
	Okt. 2005	Mehrere Vakuumlecks in den Rotatorstrecken an Bälgen

GN Magnet-Probleme

- Nov. 04: Kühlungsproblem bei 'GN NL 20'; Spule überhitzt
- GN-Magnet: vertikal fokussierender low-β-Quadrupole (12 Magnete)
- Magnet mußte getauscht werden (6 Tage); Kammer von NL 26 m bis NR 26 m belüftet
 schlechtes Vakuum bei H1
- Jan. 05: Erdschluß von Magnet 'GN NL 23'; alle vier Spulen wurden getauscht (7 Tage)
- Möglicher Grund: Magnet wurde bei Magnetstromtests im Okt. 2004 mit 1638 A betrieben; die Grenze beträgt 1600 A
- Maximaler Strom jetzt auf 1470 A beschränkt

BU-Magnet-Problem

- Jan.-Apr. 05: Immer wieder periodische Änderungen des p-Backgrounds mit Spikes ("Sieben Zwerge")
- Kleine vertikale Orbitschwankungen im gleichen Rhythmus
- Kurzschluß in Spule BU-Magnet SR
- April 05: 2 Spulen des BU-Magneten SR getauscht

Kollimatorraten

J. Keil: HERA Betrieb 2005

13

GA08 N-Problem

- Dez. 04: Erste Protonen-Background-Spikes treten auf, die mit Soll-/Ist-Abweichungen von Quadrupolkreis 'GA08 N' korreliert sind
- Juni 04: Die Spikes werden so häufig, so daß H1 und ZEUS nicht mehr messen können
- Lange Suche nach der Ursache: Hat einer der 6 Magnete am GA08N-Kreis ein Problem oder das Netzgerät?
- Zwei längere Betriebsunterbrechungen; Tests ohne Strahl an PS und Last
- Ursache war Wackelkontakt im Netzgerät; falsch eingelöteter Widerstand

Kollimatorsummenrate

HERA-Logbuch, 1.Juni 2005

Vakuumleck NR 15

- 18.Mai 05: Vakuumleck zwischen den GM-Magneten bei NR 15 m
- Ursache: Dump von 39 mA e⁻ (Temperaturalarm SR11)
- Leck am Übergang zur p-Kammer aus Edelstahl
- Klebung war nicht erfolgreich
- Magnet wurde geöffnet, Kammer ausgebaut, neu gelötet
 ⇒ erneut schlechtes Vakuum bei H1!
- Ursache: kleine Deformation der Innenseite der p-Kammer, die von Synchrotronstrahlung getroffen wurde?

Vakuumlecks im Rotatorbereich

- 11.9.05 : Vakuumleck am Absorber des vertikal ablenkenden Rotatormagneten bei OR 142 m
- Kammer abgesägt, neues Stück angeschweißt
- Ursache: Absorber zu heiß geworden; schlechter thermischer Kontakt?
- 8.5.05, 16.9.05, 12.10.05, 18.10.05:
 Vakuumlecks an Schiebestücken im Rotatorbereich (SR, 3×NR)
- Häufig nach Strahldump oder Strahlverlust
- Ursache: Fehlende Stütznaht; wird in diesem Shutdown behoben

Protonenströme 2005

- Bei Wiederinbetriebnahme: hoher Druck bei H1 🗢 60 Bunche
- Dann Bunchzahl schrittweise bis 150 erhöht (im Mai: GM-Leck; erneut 120)
- Protonenstrom hängt von der Performance der Vorbeschleuniger ab
- Hoher Einzelbunch-Strom (max(I_{pb})= 0.68 mA); nicht weit weg von Designstrom I_{max} würde 123 mA bei 180 Bunchen entsprechen!

Elektronenströme 2005

- Viele Vakuumlecks im e-Ring (WWZ bei H1 und ZEUS, Rotatorbereiche,...) verhinderten die kontinuierliche Steigerung des Stroms
- Nur eine langsame Steigerung war möglich (Sonst: Senderausfall wegen Druckanstieg an Cavities
 Strahlverlust)
- Typische Elektronenlebensdauer $\tau = 10-15$ h bei Kollisionen
- Manchmal Lebensdauern τ < 4 h nach Einfang eines Staubteilchens
- Run-Ende 1 h nachdem 13 mA erreicht wurde (HERMES High-Density-Run)

Protonen-Bunchverlängerung auf der Rampe

Multi-Bunch-Oszillationen auf der Rampe

Bunchlänge auf der Rampe

- Verlängerung der p-Bunche während der Rampe aufgrund einer Multibunch-Instabilität
- Länge bei 920 GeV ist 1.4–1.8 ns FWHM; Hourglass-Faktor: ~0.91
- Mit einem long. Feedback sollte eine kleinere Bunchlänge zu erreichen sein (5% mehr Lumi)
- Bei kleinerer Bunchlänge liefert eine Optik mit kleinerem β^{*}_z deutlich mehr Luminosität ⇔ E. Kot
- Feedback-System

 M. Hoffmann

Spezifische Luminosität 2005

- Hohe spezifische Luminosität mit Elektronen im Jahr 2005: 1.8 – 2.3×10³⁰ cm⁻¹·s⁻¹·mA⁻²
- Typische Werte f
 ür e⁺ in 2004: 1.2 – 1.6×10³⁰ cm⁻¹·s⁻¹·mA⁻²
- Design-Wert f
 ür Lumi-Upgrade: 1.84×10³⁰ cm⁻¹·s⁻¹·mA⁻²
- Grund: Dynamisches Beta-Beating bei e⁻ Betrieb erzeugt kleineres β^{*} im Vergleich zum e⁺-Betrieb; Protonen Emittanz kleiner als letztes Jahr
- Berechnete spez. Lumi basierend auf gemessenen Strahlparametern kann gemessene Lumi f
 ür Standard-Tunes relativ gut beschreiben

Gemessene und berechnete spezifische Luminosität

Integrierte Luminosität 2005

- Integrierte Luminosität beträgt
 214 pb⁻¹ in 333 Tagen (gerechnet ab 200
 17.12.2004; nach Offline-Korrektur)
- Im Mittel 0.64 pb⁻¹/d (letztes Jahr: 0.41 pb⁻¹/d)
- Bester Run lieferte 1.21 pb⁻¹ innerhalb von 13.5 Stunden
- Maximale Luminosität von HERA pro Tag: 1.9 pb⁻¹/d
- Neuer Peak-Luminositäts-Rekord: L= 5.1×10³¹ cm⁻²·s⁻¹
- Aber: Hoher Protonen-Untergrund und viele Spikes bis BU-Spule ersetzt wurde und GA08-Netzgerät repariert wurde

Verlauf der integrierten Luminosität

Integrierte Luminosität ZEUS und H1

Die Luminosität **mit** eingeschalteter Hochspannung der Spurkammern ist deutlich niedriger als die von HERA gelieferte Luminosität wegen Druck bei H1 und Protonen-Spikes!

J. Keil: HERA Betrieb 2005

HERMES

- Bedingungen f
 ür HERMES gut; Datennahmeeffizienz ~98%
- Targetpolarisation $|P_T| = 85\%$, Strahl-Polarisation ist HERMES zu niedrig; $P_B^{\lambda=+1} \sim 40\%-50\%$, $P_B^{\lambda=-1} \sim 30\%-40\%$

HERA Luminosität 2002-2005

- Mehr integrierte Luminosität im Jahr 2005 mit Elektronen im Vergleich zu 2004 mit Positronen: Höhere spezifische Luminosität und längere Laufzeit
- Performance von HERA f
 ür die letzten 1½ Jahre bestimmt die gesamte von HERA II gelieferte Luminosit
 ät!

Vergleich e+/e--Daten

Im Jahr 2005 wurde sowie integrierte Luminosität aufgesammelt, wie während der gesamten Laufzeit von HERA I!

Polarisation 2005

- Polarisation war 2005 niedriger als 2004:
 - □ kollidierende Bunche P≤45%
 - □ nicht-koll. Bunche P≈50-55%!
- Orsache: Strani-Strahi-Wechselwirkung verschiebt Tunes der koll. Bunche weg von ganzer Zahl (wenn Tunecontroller an)
 Emittanz der Protonen wächst mit der Zeit Ursache: Strahl-Strahl-Wechselwirkung
- ⇒ Polarisation der koll. Bunche steigt
- Standard-Tunes bei e--Betrieb sind gut für hohe Luminosität, aber nicht gut für hohe Polarisation!
- Alternative Tunes ("Mirror tunes") wurden getestet, aber spezifische Luminosität war signifikant kleiner
 - ⇒ nach 1 Monat zurück zu alten Tunes

Polarisation 2005

- Drei Helizitätswechsel (rote Linien)
- Maximal 45% Polarisation für kollidierende Bunche am Ende des Runs erreicht
- Hängt maximal erreichbare Polarisation von der Stellung der Spinrotatoren ab?
- Mehr über Polarisation:
 ⇒ M. Vogt

Lebensdauer im Elektronenbetrieb

- Plötzliche Einbrüche der Lebensdauer beim Betrieb von HERA mit e⁻; Rückkehr der Lebensdauer in Schritten
- Gleichzeitig werden erhöhte Strahlverlustraten gemessen
- Beobachtet f
 ür I > 30 mA seit Jan. '05; die Zahl der starken und langdauernden Lebensdauereinbr
 üche ist aber gl
 ücklicherweise klein
- Theorie: Einfang von positiv geladenen Staubteilchen durch den negativ geladenen Elektronenstrahl
- Quelle des Staubs: Ionen-Getter-Pumpen (Pumpen in den Dipolen wurden im Shutdown 1997/98 durch NEG-Pumpen ersetzt)
- Mehr dazu ⇒A. Kling

Raten der Strahlverlustmonitore

28. Nov. 2005

J. Keil: HERA Betrieb 2005

Vergleich der Lebensdauern e⁺/e⁻

Lebensdauer mit Positronen 2004:

- Stetiges Anwachsen der Lebensdauer mit abfallendem Strom (weniger SR ⇒ Druck kleiner)
- Am Ende des Runs niedrige Lebensdauer aufgrund Injektion eines Gases mit hoher Dichte für ~1 h von HERMES

Lebensdauer mit Elektronen 2005:

- Ebenfalls Anstieg der Lebensdauer bei abfallendem Strom
- Aber: Viele kurze Spikes in der Lebensdauer; häufig reduzierte Lebensdauer über mehrere Minuten oder Stunden
- Nicht jeder Lebensdauereinbruch ist Staub!

Füllzeiten und Run-Zeiten 2005

- Die theoretische Füllzeit (=Zeit zwischen Dump und nächstem Lumi-Run) beträgt ~2½ Stunden:
 - Massage: 30 Min.
 - P-Injektion + p-Rampe: 30+30 Min.
 - E-Injektion + e-Rampe: 20+20 Min.
 - Lumi-File anfahren: 20 Min.
- Nur wenige Runs erreichen diese minimale Dauer!

- Die optimale Run-Dauer sollte 12 h betragen (40 mA → 13 mA + High-Density-Run)
- Viele Runs enden vorzeitig
- Ursachen f
 ür kurze Run-Dauer: Entweder Ende durch Ausfall einer Komponente oder niedrige Lebensdauer!

Minimale Zeit zwischen Dump und Lumi-Run

2.5 Stunden Minimalzeit

Effizienz des Betriebs 2005

HERA Effizienz 2005

Maschinenschichten, Kalibration der Experimente und Wartungstage wurden nicht gezählt

Zahlen für 2005:

 Zeitverlust pro Fehler 	: 2.4 h
Zahl der Fehler/Tag	: 2.8
Zahl der Fehler/Run	: 2.4
 Verlorene Zeit/Tag 	: 6.8 h
Zahl der e-Injektionen/Run	: 1.6
Zahl der p-Injektionen/Run	: 1.6
 Dauer der p-Injektion 	: 1.4 h
 Dauer der e-Injektion 	: 0.82 h
Dauer eines Lumi-Runs	: 8.65 h
Vom Dump zum Lumi-Run	: 9.2 h

Verteilung der Fehler 2005

Verlorene Zeit wird dominiert von...

1. Netzgeräten

4. Magnete

5. PETRA

- ⇒ 'GA08 N' etc.
- **2. Vakuumlecks** ⇒ 'GN NR13', Rotatorsektionen,...
- **3. Kälteanlage** ⇒ p-Ring wurde aufgewärmt
 - ⇒ Spulen 'GN NL20', 'GN NL23', 'BU SR'
 - ⇒ Strahlverluste & Aufplatzen der Emittanz

28. Nov. 2005

Verbesserte e⁻-Transfer-Effizienz

- Transfer-Effizienz des El-Wegs betrug 2004 manchmal nur 30-40% und war nicht-reproduzierbar!
- Verbesserungsmaßnahmen:
 - Neue angepaßte EI-Weg-Optik
 - Sechs BPMs eingebaut (2004)
 - Vermessung des EI-Weg
 ⇒ keine groben Fehler
 - Messung der Response Matrix
 ⇒ große Abweichung der Optik
 - Magnetfeldmessung des El-Weg-Quadrupols
 - ⇒ Kalibrationsfehler von 2%

Jetzt:

- Typische Transfer-Effizienz 70–80 % und stabiler als vorher
- Daher: schnellere Füllung und weniger Strahlung während Injektion
- Fehlende 20%: PETRA-Extraktion

Zusammenfassung

- Das Jahr 2005 war ein Rekordjahr f
 ür HERA: Die integrierte Luminosit
 ät mit Elektronen von 214 pb⁻¹ ist mehr als ein Faktor zwei gr
 ößer als im Vorjahr mit 92 pb⁻¹
- Der Elektronenstrom erreichte in 2005 nur etwa 40 mA.
 Vakuumprobleme und technische Ausfälle verhinderten die kontinuierliche Erhöhung
- Die Polarisation der kollidierenden Bunche betrug ≤45% am Run-Ende (Beam-Beam-Effekt)
- Die alternativen Tunes im Mai/Juni ergaben höhere Polarisation aber niedrigerer spezifische Luminosität; die Experimente bevorzugten die alten Tunes
- p-Background und p-Spikes waren problematisch, bis ihre Ursachen behoben wurden. Dies kostete einen relativ großen Anteil an für die Experimente verwendbare Luminosität
- Die Elektronen-Lebensdauer-Probleme sind in der Häufigkeit, mit der sie zur Zeit auftreten störend, aber unkritisch für den Betrieb