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In this chapter we introduce the following measures:

■ The reliability (survivor) function R(t)
■ The failure rate function z(t)
■ The mean time to failure (MTTF)
■ The mean residual life (MRL)

of a single item that is not repaired when it fails.
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The following life distributions are discussed:

■ The exponential distribution
■ The gamma distribution
■ The Weibull distribution
■ The normal distribution
■ The lognormal distribution
■ The Birnbaum-Saunders distribution
■ The inverse Gaussian distributions

In addition we cover three discrete distributions:

■ The binomial distribution
■ The Poisson distribution
■ The geometric distribution
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X(t)

0
t

1

Time to failure, T

Failure

X(t) =

{

1 if the item is functioning at time t
0 if the item is in a failed state at time t

The state variable X(t) and the time to failure T will generally
be random variables.
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Different time concepts may be used, like

■ Calendar time
■ Operational time
■ Number of kilometers driven by a car
■ Number of cycles for a periodically working item
■ Number of times a switch is operated
■ Number of rotations of a bearing

In most applications we will assume that the time to failure T is a
continuous random variable (Discrete variables may be
approximated by a continuous variable)
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The distribution function of T is

F (t) = Pr(T ≤ t) =

∫ t

0
f(u) du for t > 0

Note that
F (t) = Probability that the item will fail within the interval (0, t]

http://www.ntnu.no/~marvinr
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The probability density function (pdf) of T is

f(t) =
d

dt
F (t) = lim

∆t→∞

F (t + ∆t) − F (t)

∆t
= lim

∆t→∞

Pr(t < T ≤ t + ∆

∆t

When ∆t is small, then

Pr(t < T ≤ t + ∆t) ≈ f(t) · ∆t

0 t

∆ t

Time

When we are standing at time t = 0 and ask: What is the
probability that the item will fail in the interval (t, t + ∆t]? The
answer is approximately f(t) · ∆t

http://www.ntnu.no/~marvinr
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■ The area under the pdf-curve (f(t)) is always 1,
∫

∞

0 f(t) dt = 1
■ The area under the pdf-curve to the left of t is equal to F (t)
■ The area under the pdf-curve between t1 and t2 is

F (t2) − F (t1) = Pr(t1 < T ≤ t2)
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R(t) = Pr(T > t) = 1 − F (t) =

∫

∞

t
f(u) du

■ R(t) = The probability that the item will not fail in (0, t]
■ R(t) = The probability that the item will survive at least to

time t
■ R(t) is also called the survivor function of the item

http://www.ntnu.no/~marvinr
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Consider the conditional probability

Pr(t < T ≤ t + ∆t | T > t) =
Pr(t < T ≤ t + ∆t)

Pr(T > t)

=
F (t + ∆t) − F (t)

R(t)

The failure rate function of the item is

z(t) = lim
∆t→0

Pr(t < T ≤ t + ∆t | T > t)

∆t

= lim
∆t→0

F (t + ∆t) − F (t)

∆t
·

1

R(t)
=

f(t)

R(t)

When ∆t is small, we have

Pr(t < T ≤ t + ∆t | T > t) ≈ z(t) · ∆t
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0 t

∆ t

Time

■ Note the difference between the failure rate function z(t) and
the probability density function f(t).

■ When we follow an item from time 0 and note that it is still
functioning at time t, the probability that the item will fail
during a short interval of length ∆t after time t is z(t) · ∆t

■ The failure rate function is a “property” of the item and is
sometimes called the force of mortality (FOM) of the item.
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z(t)

Time t0

Burn-in

period Useful life period
Wear-out

period
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Expressed

by F (t) f(t) R(t) z(t)

F (t) = –

Z

t

0

f(u) du 1 − R(t) 1 − exp

„

−

Z

t

0

z(u) du

«

f(t) =
d

dt
F (t) – −

d

dt
R(t) z(t) · exp

„

−

Z

t

0

z(u) du

«

R(t) = 1 − F (t)

Z

∞

t

f(u) du – exp

„

−

Z

t

0

z(u) du

«

z(t) =
dF (t)/dt

1 − F (t)

f(t)
R

∞

t
f(u) du

−

d

dt
lnR(t) –
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The mean time to failure, MTTF, of an item is

MTTF = E(T ) =

∫

∞

0
tf(t) dt (1)

Since f(t) = −R′(t),

MTTF = −

∫

∞

0
tR′(t) dt

By partial integration

MTTF = − [tR(t)]∞0 +

∫

∞

0
R(t) dt

If MTTF < ∞, it can be shown that [tR(t)]∞0 = 0. In that case

MTTF =

∫

∞

0
R(t) dt (2)

It is often easier to determine MTTF by (2) than by (1).

http://www.ntnu.no/~marvinr
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Consider an item with survivor function

R(t) =
1

(0.2 t + 1)2
for t ≥ 0

where the time t is measured in months. The probability density
function is

f(t) = −R′(t) =
0.4

(0.2 t + 1)3

and the failure rate function is

z(t) =
f(t)

R(t)
=

0.4

0.2 t + 1

The mean time to failure is:

MTTF =

∫

∞

0
R(t) dt = 5 months

http://www.ntnu.no/~marvinr
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Time t

0 5 10 15 20 25

f(
t)

0,00

0,02

0,04

0,06

0,08 Mode

Median

MTTF

The median life tm is defined by

R(tm) = 0.50

The median divides the distribution in two halves. The item will
fail before time tm with 50% probability, and will fail after time
tm with 50% probability.

The mode of a life distribution is the most likely failure time,
that is, the time tmode where the probability density function f(t)
attains its maximum.:

http://www.ntnu.no/~marvinr
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The mode of a life distribution is the most likely failure time,
that is, the time tmode where the probability density function f(t)
attains its maximum.:

http://www.ntnu.no/~marvinr
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Consider an item that is put into operation at time t = 0 and is
still functioning at time t. The probability that the item of age t
survives an additional interval of length x is

R(x | t) = Pr(T > x + t | T > t) =
Pr(T > x + t)

Pr(T > t)
=

R(x + t)

R(t)

R(x | t) is called the conditional survivor function of the item at
age t.

The mean residual (or, remaining) life, MRL(t), of the item at
age t is

MRL(t) = µ(t) =

∫

∞

0
R(x | t) dx =

1

R(t)

∫

∞

t
R(x) dx

http://www.ntnu.no/~marvinr
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Consider an item with failure rate function z(t) = t/(t + 1). The
failure rate function is increasing and approaches 1 when t → ∞.
The corresponding survivor function is

R(t) = exp

(

−

∫ t

0

u

u + 1
du

)

= (t + 1) e−t

MTTF =

∫

∞

0
(t + 1) e−t dt = 2

The conditional survival function is

R(x | t) = Pr(T > x + t | T > t) =
(t + x + 1) e−(t+x)

(t + 1) e−t
=

t + x + 1

t + 1
e

The mean residual life is

MRL(t) =

∫

∞

0
R(x | t) dx = 1 +

1

t + 1

We see that MRL(t) is equal to 2 (= MTTF) when t = 0, that
MRL(t) is a decreasing function in t, and that MRL(t) → 1 when
t → ∞.

http://www.ntnu.no/~marvinr
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The binomial situation is defined by:

1. We have n independent trials.
2. Each trial has two possible outcomes A and A∗.
3. The probability Pr(A) = p is the same in all the n trials.

The trials in this situation are sometimes called Bernoulli trials.
Let X denote the number of the n trials that have outcome A.
The distribution of X is

Pr(X = x) =

(

n

x

)

px(1 − p)n−x for x = 0, 1, . . . , n

where
(

n
x

)

= n!
x!(n−x)! is the binomial coefficient.

The distribution is called the binomial distribution (n, p), and we
sometimes write X ∼ bin(n, p). The mean value and the variance
of X are

E(X) = np var(X) = np(1 − p)

http://www.ntnu.no/~marvinr
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Assume that we carry out a sequence of Bernoulli trials, and want
to find the number Z of trials until the first trial with outcome A.
If Z = z, this means that the first (z− 1) trials have outcome A∗,
and that the first A will occur in trial z. The distribution of Z is

Pr(Z = z) = (1 − p)z−1p for z = 1, 2, . . .

This distribution is called the geometric distribution. We have
that

Pr(Z > z) = (1 − p)z

The mean value and the variance of Z are

E(Z) =
1

p

var(X) =
1 − p

p2

http://www.ntnu.no/~marvinr
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Consider occurrences of a specific event A, and assume that

1. The event A may occur at any time in the interval, and the
probability of A occurring in the interval (t, t + ∆t] is
independent of t and may be written as λ · ∆t + o(∆t),
where λ is a positive constant.

2. The probability of more that one event A in the interval
(t, t + ∆t] is o(∆t).

3. Let (t11, t12], (t21, t22], . . . be any sequence of disjoint
intervals in the time period in question. Then the events “A
occurs in (tj1, tj2],” j = 1, 2, . . ., are independent.

Without loss of generality we let t = 0 be the starting point of
the process.

http://www.ntnu.no/~marvinr
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Let N(t) denote the number of times the event A occurs during
the interval (0, t]. The stochastic process {N(t), t ≥ 0} is called
a Homogeneous Poisson Process (HPP) with rate λ.

The distribution of N(t) is

Pr(N(t) = n) =
(λt)n

n!
e−λt for n = 0, 1, 2, . . .

The mean and the variance of N(t) are

E(N(t)) =
∞
∑

n=0

n · Pr(N(t) = n) = λt

var(N(t)) = λt

http://www.ntnu.no/~marvinr
http://www.ntnu.no/ross/srt


Life distributions

Introduction

Discrete
distributions

Life distributions

Exponential

Weibull

Marvin Rausand, March 14, 2006 System Reliability Theory (2nd ed), Wiley, 2004 – 26 / 31

http://www.ntnu.no/~marvinr
http://www.ntnu.no/ross/srt


Exponential distribution

Introduction

Discrete
distributions

Life distributions

Exponential

Weibull

Marvin Rausand, March 14, 2006 System Reliability Theory (2nd ed), Wiley, 2004 – 27 / 31

Consider an item that is put into operation at time t = 0.
Assume that the time to failure T of the item has probability
density function (pdf)

f(t) =

{

λe−λt for t > 0, λ > 0
0 otherwise

This distribution is called the exponential distribution with
parameter λ, and we sometimes write T ∼ exp(λ).

The survivor function of the item is

R(t) = Pr(T > t) =

∫

∞

t
f(u) du = e−λt for t > 0

The mean and the variance of T are

MTTF =

∫

∞

0
R(t) dt =

∫

∞

0
e−λt dt =

1

λ

var(T ) = 1/λ2

http://www.ntnu.no/~marvinr
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The failure rate function is

z(t) =
f(t)

R(t)
=

λe−λt

e−λt
= λ

The failure rate function is hence constant and independent of
time.
Consider the conditional survivor function

R(x | t) = Pr(T > t + x | T > t) =
Pr(T > t + x)

Pr(T > t)

=
e−λ(t+x)

e−λt
= e−λx = Pr(T > x) = R(x)

A new item, and a used item (that is still functioning), will
therefore have the same probability of surviving a time interval of
length t.
A used item is therefore stochastically as good as new.

http://www.ntnu.no/~marvinr
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The time to failure T of an item is said to be Weibull distributed
with parameters α and λ [T ∼ Weibull(α, λ) ] if the distribution
function is given by

F (t) = Pr(T ≤ t) =

{

1 − e−(λt)α

for t > 0
0 otherwise

The corresponding probability density function (pdf) is

f(t) =
d

dt
F (t) =

{

αλαtα−1e−(λt)α

for t > 0
0 otherwise

Time t

0,0 0,5 1,0 1,5 2,0 2,5 3,0

f(
t)

0,0

0,5

1,0

1,5 α = 0.5

α = 1

α = 2

α = 3
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The survivor function is

R(t) = Pr(T > 0) = e−(λt)α

for t > 0

and the failure rate function is

z(t) =
f(t)

R(t)
= αλαtα−1 for t > 0

Time t

0,0 0,2 0,4 0,6 0,8 1,0

z(
t)

0,0

0,5

1,0

1,5

2,0

α = 0.5

α = 1

α = 2
α = 3
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The mean time to failure is

MTTF =

∫

∞

0
R(t) dt =

1

λ
Γ

(

1

α
+ 1

)

The median life tm is

R(tm) = 0.50 ⇒ tm =
1

λ
(ln 2)1/α

The variance of T is

var(T ) =
1

λ2

(

Γ

(

2

α
+ 1

)

− Γ2

(

1

α
+ 1

))

Note that MTTF/
√

var(T ) is independent of λ.
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