Chapter ² Failure ModelsPart 1: Introduction

Marvin Rausand

 Department of Production and Quality EngineeringNorwegian University of Science and Technologymarvin.rausand@ntnu.no

System [Reliability](http://www.ntnu.no/ross/srt) Theory (2nd ed), Wiley, $2004 - 1 / 31$

 Rel. [measures](#page-2-0) Life [distributions](#page-3-0)State [variable](#page-4-0) Time to [failure](#page-5-0) Distr. [function](#page-6-0) [Probability](#page-7-0) density[Distribution](#page-8-0) of ^T [Reliability](#page-9-0) funct. [Failure](#page-10-0) rate [Bathtub](#page-12-0) curve Some [formulas](#page-13-0)[MTTF](#page-14-0) [Example](#page-15-0) 2.1[Median](#page-16-0) [Mode](#page-17-0) [MRL](#page-18-0) [Example](#page-19-0) 2.2Discrete[distributions](#page-20-0)

Life [distributions](#page-25-0)

Introduction

Reliability measures

[Introduction](#page-1-0)

Rel. [measures](#page-2-0)

 Life [distributions](#page-3-0)State [variable](#page-4-0) Time to [failure](#page-5-0) Distr. [function](#page-6-0) [Probability](#page-7-0) density[Distribution](#page-8-0) of ^T [Reliability](#page-9-0) funct. [Failure](#page-10-0) rate [Bathtub](#page-12-0) curveSome [formulas](#page-13-0)**[MTTF](#page-14-0)** [Example](#page-15-0) 2.1[Median](#page-16-0)[Mode](#page-17-0)[MRL](#page-18-0)[Example](#page-19-0) 2.2

Discrete [distributions](#page-20-0)

Life [distributions](#page-25-0)

In this chapter we introduce the following measures:

- ■The reliability (survivor) function $R(t)$
- ■The failure rate function $z(t)$
- ■The mean time to failure (MTTF)
- ■The mean residual life (MRL)

of ^a single item that is not repaired when it fails.

Life distributions

[Introduction](#page-1-0) Rel. [measures](#page-2-0)Life [distributions](#page-3-0)State [variable](#page-4-0) Time to [failure](#page-5-0) Distr. [function](#page-6-0) [Probability](#page-7-0) density[Distribution](#page-8-0) of ^T [Reliability](#page-9-0) funct. [Failure](#page-10-0) rate [Bathtub](#page-12-0) curve Some [formulas](#page-13-0)**[MTTF](#page-14-0)** [Example](#page-15-0) 2.1[Median](#page-16-0)[Mode](#page-17-0)[MRL](#page-18-0) [Example](#page-19-0) 2.2**Discrete** [distributions](#page-20-0)

Life [distributions](#page-25-0)

The following life distributions are discussed:

- ■The exponential distribution
- ■The gamma distribution
- ■The Weibull distribution
- ■The normal distribution
- ■The lognormal distribution
- ■The Birnbaum-Saunders distribution
- ■The inverse Gaussian distributions

In addition we cover three discrete distributions:

- ■The binomial distribution
- ■The Poisson distribution
- ■The geometric distribution

State variable

 $X(t)$ Ω t1Time to failure, TFailure

 $X(t) = \left\{ \begin{array}{ll} 1 & \textrm{if the item is functioning at time t} \ 0 & \textrm{if the item is in a failed state at time t} \end{array} \right.$

The state variable $X(t)$ and the time to failure T will generally be random variables.

Time to failure

[Introduction](#page-1-0) Rel. [measures](#page-2-0)Life [distributions](#page-3-0)State [variable](#page-4-0) Time to [failure](#page-5-0) Distr. [function](#page-6-0) [Probability](#page-7-0) density[Distribution](#page-8-0) of ^T [Reliability](#page-9-0) funct. [Failure](#page-10-0) rate [Bathtub](#page-12-0) curveSome [formulas](#page-13-0)**[MTTF](#page-14-0)** [Example](#page-15-0) 2.1[Median](#page-16-0)[Mode](#page-17-0)[MRL](#page-18-0) [Example](#page-19-0) 2.2**Discrete** [distributions](#page-20-0)Life [distributions](#page-25-0)

Different time concepts may be used, like

Calendar time

■

- ■Operational time
- ■Number of kilometers driven by ^a car
- ■Number of cycles for ^a periodically working item
- ■Number of times ^a switch is operated
- ■Number of rotations of ^a bearing

In most applications we will assume that the time to failure T is a continuous random variable (Discrete variables may beapproximated by ^a continuous variable)

Distribution function

[Introduction](#page-1-0) Rel. [measures](#page-2-0) Life [distributions](#page-3-0)State [variable](#page-4-0) Time to [failure](#page-5-0) Distr. [function](#page-6-0) [Probability](#page-7-0) density[Distribution](#page-8-0) of ^T [Reliability](#page-9-0) funct. [Failure](#page-10-0) rate [Bathtub](#page-12-0) curve Some [formulas](#page-13-0)**[MTTF](#page-14-0)** [Example](#page-15-0) 2.1[Median](#page-16-0)[Mode](#page-17-0) [MRL](#page-18-0) [Example](#page-19-0) 2.2**Discrete** [distributions](#page-20-0)

Life [distributions](#page-25-0)

The *distribution function* of T is

$$
F(t) = \Pr(T \le t) = \int_0^t f(u) \, du \quad \text{for } t > 0
$$

Note that

 $F(t) =$ Probability that the item will fail within the interval $(0,t]$

Probability density function

[Introduction](#page-1-0) Rel. [measures](#page-2-0) Life [distributions](#page-3-0)State [variable](#page-4-0) Time to [failure](#page-5-0) Distr. [function](#page-6-0) [Probability](#page-7-0) density[Distribution](#page-8-0) of ^T [Reliability](#page-9-0) funct. [Failure](#page-10-0) rate [Bathtub](#page-12-0) curve Some [formulas](#page-13-0)**[MTTF](#page-14-0)** [Example](#page-15-0) 2.1[Median](#page-16-0)[Mode](#page-17-0)[MRL](#page-18-0) [Example](#page-19-0) 2.2**Discrete** [distributions](#page-20-0)

Life [distributions](#page-25-0)

When we are standing at time $t=0$ and ask: What is the standard state that probability that the item will fail in the interval $(t,t+\Delta t]$? The answer is approximately $f(t)\cdot\Delta t$

System [Reliability](http://www.ntnu.no/ross/srt) Theory (2nd ed), Wiley, ²⁰⁰⁴ – ⁸ / ³¹

Distribution of ^T

[Introduction](#page-1-0) Rel. [measures](#page-2-0) Life [distributions](#page-3-0)State [variable](#page-4-0) Time to [failure](#page-5-0) Distr. [function](#page-6-0) [Probability](#page-7-0) density [Distribution](#page-8-0) of ^T [Reliability](#page-9-0) funct. [Failure](#page-10-0) rate [Bathtub](#page-12-0) curve Some [formulas](#page-13-0)**[MTTF](#page-14-0)** [Example](#page-15-0) 2.1[Median](#page-16-0)[Mode](#page-17-0) [MRL](#page-18-0) [Example](#page-19-0) 2.2**Discrete** [distributions](#page-20-0)Life [distributions](#page-25-0)

The area under the pdf-curve $(f(t))$ is always 1, $\int_0^\infty f(t) dt = 1$ The area under the pdf-curve to the left of t is equal to $F(t)$ The area under the pdf-curve between t_1 and t_2 is

$$
F(t_2) - F(t_1) = \Pr(t_1 < T \le t_2)
$$

■

■

■

Reliability Function

[Introduction](#page-1-0) Rel. [measures](#page-2-0) Life [distributions](#page-3-0)State [variable](#page-4-0) Time to [failure](#page-5-0) Distr. [function](#page-6-0) [Probability](#page-7-0) density[Distribution](#page-8-0) of ^T [Reliability](#page-9-0) funct. [Failure](#page-10-0) rate [Bathtub](#page-12-0) curve Some [formulas](#page-13-0)**[MTTF](#page-14-0)** [Example](#page-15-0) 2.1[Median](#page-16-0)[Mode](#page-17-0) [MRL](#page-18-0) [Example](#page-19-0) 2.2**Discrete** [distributions](#page-20-0)Life [distributions](#page-25-0)

$$
R(t) = \Pr(T > t) = 1 - F(t) = \int_t^\infty f(u) \, du
$$

■ $R(t) =$ The probability that the item will not fail in $(0, t]$
 \blacksquare ■ $R(t) =$ The probability that the item will survive at least to time t

■ $R(t)$ is also called the *survivor function* of the item

System [Reliability](http://www.ntnu.no/ross/srt) Theory (2nd ed), Wiley, ²⁰⁰⁴ – ¹⁰ / ³¹

Failure rate function

[Introduction](#page-1-0) Rel. [measures](#page-2-0) Life [distributions](#page-3-0)State [variable](#page-4-0) Time to [failure](#page-5-0) Distr. [function](#page-6-0) [Probability](#page-7-0) density[Distribution](#page-8-0) of ^T[Reliability](#page-9-0) funct.

[Failure](#page-10-0) rate

 [Bathtub](#page-12-0) curve Some [formulas](#page-13-0)**[MTTF](#page-14-0)** [Example](#page-15-0) 2.1[Median](#page-16-0)[Mode](#page-17-0)

[MRL](#page-18-0)

[Example](#page-19-0) 2.2

Discrete [distributions](#page-20-0)

Life [distributions](#page-25-0)

Consider the conditional probability

 $Pr(t < T \leq$

$$
\leq t + \Delta t \mid T > t) = \frac{\Pr(t < T \leq t + \Delta t)}{\Pr(T > t)}
$$

$$
= \frac{F(t + \Delta t) - F(t)}{R(t)}
$$

The failure rate function of the item is

$$
z(t) = \lim_{\Delta t \to 0} \frac{\Pr(t < T \le t + \Delta t | T > t)}{\Delta t}
$$

=
$$
\lim_{\Delta t \to 0} \frac{F(t + \Delta t) - F(t)}{\Delta t} \cdot \frac{1}{R(t)} = \frac{f(t)}{R(t)}
$$

When Δt is small, we have

$$
\boxed{\Pr(t < T \leq t + \Delta t \mid T > t) \approx z(t) \cdot \Delta t}
$$

Marvin [Rausand,](http://www.ntnu.no/~marvinr) March 14, ²⁰⁰⁶

System [Reliability](http://www.ntnu.no/ross/srt) Theory (2nd ed), Wiley, ²⁰⁰⁴ – ¹¹ / ³¹

Bathtub curve

Some formulas

[Introduction](#page-1-0) Rel. [measures](#page-2-0)Life [distributions](#page-3-0)State [variable](#page-4-0) Time to [failure](#page-5-0) Distr. [function](#page-6-0) [Probability](#page-7-0) density[Distribution](#page-8-0) of ^T [Reliability](#page-9-0) funct. [Failure](#page-10-0) rate [Bathtub](#page-12-0) curve Some [formulas](#page-13-0)**[MTTF](#page-14-0)** [Example](#page-15-0) 2.1[Median](#page-16-0)[Mode](#page-17-0) [MRL](#page-18-0) [Example](#page-19-0) 2.2**Discrete** [distributions](#page-20-0)Life [distributions](#page-25-0)Expressedbyy $F(t)$ $f(t)$ $R(t)$ $z(t)$ $F(t) =$ $=$ $-\int_0^t f(u) du$ 1 − R(t) 1 − exp $\left(-\int_0^t z(u) du\right)$ $f(t) =$ $=\frac{d}{dt}F(t)$ – $-\frac{d}{dt}R(t)$ z(t) · exp $\left(-\int_0^t z(u) du\right)$ $R(t) = 1 - F(t) \int_{t}^{\infty}$ $\int_{t}^{\infty} f(u) du$ – $\exp\left(-\int_{0}^{t} z(u) du\right)$ $z(t)=$ $=\frac{dF(t)/dt}{1 - F(t)}$ $\frac{f(t)}{\int_t^{\infty} f(u) du}$ $-\frac{d}{dt} \ln R(t)$ –

Mean time to failure

The mean time to failure, MTTF, of an item is

[Introduction](#page-1-0) Rel. [measures](#page-2-0) Life [distributions](#page-3-0)State [variable](#page-4-0) Time to [failure](#page-5-0) Distr. [function](#page-6-0) [Probability](#page-7-0) density[Distribution](#page-8-0) of ^T [Reliability](#page-9-0) funct. [Failure](#page-10-0) rate [Bathtub](#page-12-0) curveSome [formulas](#page-13-0)

[MTTF](#page-14-0)

[Example](#page-15-0) 2.1

[Median](#page-16-0)

[Mode](#page-17-0)

[MRL](#page-18-0)

[Example](#page-19-0) 2.2

Discrete [distributions](#page-20-0)

Life [distributions](#page-25-0)

$$
MTTF = E(T) = \int_0^\infty t f(t) dt
$$

Since $f(t) = -R'(t)$, (1)

$$
\text{MTTF} = -\int_0^\infty tR'(t) \, dt
$$

By partial integration

$$
MTTF = -[tR(t)]_0^{\infty} + \int_0^{\infty} R(t) dt
$$

If MTTF $<\infty$, it can be shown that $[t R(t)]^{\infty}_0 = 0$. In that case

$$
MTTF = \int_0^\infty R(t) dt
$$
 (2)

It is often easier to determine MTTF by ([2](#page-14-1)) than by [\(1](#page-14-2)).

Marvin [Rausand,](http://www.ntnu.no/~marvinr) March 14, ²⁰⁰⁶

System [Reliability](http://www.ntnu.no/ross/srt) Theory (2nd ed), Wiley, ²⁰⁰⁴ – ¹⁵ / ³¹

Example 2.1

[Introduction](#page-1-0) Rel. [measures](#page-2-0) Life [distributions](#page-3-0)State [variable](#page-4-0) Time to [failure](#page-5-0) Distr. [function](#page-6-0) [Probability](#page-7-0) density[Distribution](#page-8-0) of ^T [Reliability](#page-9-0) funct. [Failure](#page-10-0) rate [Bathtub](#page-12-0) curve Some [formulas](#page-13-0)**[MTTF](#page-14-0)** [Example](#page-15-0) 2.1

[Median](#page-16-0)

[Mode](#page-17-0)

[MRL](#page-18-0)

[Example](#page-19-0) 2.2

Discrete [distributions](#page-20-0)

Life [distributions](#page-25-0)

Consider an item with survivor function

$$
R(t) = \frac{1}{(0.2 t + 1)^2} \quad \text{for } t \ge 0
$$

where the time t is measured in months. The probability density function is

$$
f(t) = -R'(t) = \frac{0.4}{(0.2t + 1)^3}
$$

and the failure rate function is

$$
z(t) = \frac{f(t)}{R(t)} = \frac{0.4}{0.2 t + 1}
$$

The mean time to failure is:

$$
MTTF = \int_0^\infty R(t) \, dt = 5 \text{ months}
$$

Median

[Introduction](#page-1-0) Rel. [measures](#page-2-0)Life [distributions](#page-3-0)State [variable](#page-4-0) Time to [failure](#page-5-0) Distr. [function](#page-6-0) [Probability](#page-7-0) density[Distribution](#page-8-0) of ^T [Reliability](#page-9-0) funct. [Failure](#page-10-0) rate [Bathtub](#page-12-0) curveSome [formulas](#page-13-0)**[MTTF](#page-14-0)** [Example](#page-15-0) 2.1[Median](#page-16-0)[Mode](#page-17-0)[MRL](#page-18-0)

 [Example](#page-19-0) 2.2**Discrete**

[distributions](#page-20-0)

Life [distributions](#page-25-0)

The median divides the distribution in two halves. The item will fail before time $t_{\sf m}$ with 50% probability, and will fail after time t_{m} with 50% probability.

The mode of ^a life distribution is the most likely failure time, that is, the time $t_{\sf mode}$ where the probability density function $f(t)$ attains its maximum.:

Marvin [Rausand,](http://www.ntnu.no/~marvinr) March 14, ²⁰⁰⁶

System [Reliability](http://www.ntnu.no/ross/srt) Theory (2nd ed), Wiley, ²⁰⁰⁴ – ¹⁷ / ³¹

Mode

[Introduction](#page-1-0) Rel. [measures](#page-2-0) Life [distributions](#page-3-0)State [variable](#page-4-0) Time to [failure](#page-5-0) Distr. [function](#page-6-0) [Probability](#page-7-0) density[Distribution](#page-8-0) of ^T [Reliability](#page-9-0) funct. [Failure](#page-10-0) rate [Bathtub](#page-12-0) curve Some [formulas](#page-13-0)**[MTTF](#page-14-0)** [Example](#page-15-0) 2.1[Median](#page-16-0) [Mode](#page-17-0)[MRL](#page-18-0)[Example](#page-19-0) 2.2

Discrete [distributions](#page-20-0)

Life [distributions](#page-25-0)

The mode of ^a life distribution is the most likely failure time, that is, the time $t_{\sf mode}$ where the probability density function $f(t)$ attains its maximum.:

Mean residual life

[Introduction](#page-1-0) Rel. [measures](#page-2-0) Life [distributions](#page-3-0)State [variable](#page-4-0) Time to [failure](#page-5-0) Distr. [function](#page-6-0) [Probability](#page-7-0) density[Distribution](#page-8-0) of ^T [Reliability](#page-9-0) funct. [Failure](#page-10-0) rate [Bathtub](#page-12-0) curveSome [formulas](#page-13-0)**[MTTF](#page-14-0)** [Example](#page-15-0) 2.1[Median](#page-16-0)[Mode](#page-17-0)

[MRL](#page-18-0)

[Example](#page-19-0) 2.2

Discrete [distributions](#page-20-0)

Life [distributions](#page-25-0)

Consider an item that is put into operation at time $t=0$ and is still functioning at time $t.$ The probability that the item of age t survives an additional interval of length x is

$$
R(x | t) = \Pr(T > x + t | T > t) = \frac{\Pr(T > x + t)}{\Pr(T > t)} = \frac{R(x + t)}{R(t)}
$$

 $R(x \mid t)$ is called the *conditional survivor function* of the item at age $t.$

The *mean residual (or, remaining) life*, MRL $\left(t\right)$, of the item at age t is

$$
MRL(t) = \mu(t) = \int_0^\infty R(x \mid t) dx = \frac{1}{R(t)} \int_t^\infty R(x) dx
$$

Marvin [Rausand,](http://www.ntnu.no/~marvinr) March 14, ²⁰⁰⁶

System [Reliability](http://www.ntnu.no/ross/srt) Theory (2nd ed), Wiley, ²⁰⁰⁴ – ¹⁹ / ³¹

[Introduction](#page-1-0) Rel. [measures](#page-2-0)Life [distributions](#page-3-0)State [variable](#page-4-0) Time to [failure](#page-5-0) Distr. [function](#page-6-0) [Probability](#page-7-0) density[Distribution](#page-8-0) of ^T [Reliability](#page-9-0) funct. [Failure](#page-10-0) rate [Bathtub](#page-12-0) curveSome [formulas](#page-13-0)**[MTTF](#page-14-0)** [Example](#page-15-0) 2.1[Median](#page-16-0)[Mode](#page-17-0)

[MRL](#page-18-0)

```

Example 2.2
```
Discrete [distributions](#page-20-0)

Life [distributions](#page-25-0)

Example 2.2Consider an item with failure rate function $z(t) = t/(t+1)$. The failure rate function is increasing and approaches 1 when $t\to\infty$.
The corresponding survivor function is

$$
R(t) = \exp\left(-\int_0^t \frac{u}{u+1} du\right) = (t+1)e^{-t}
$$

MTTF =
$$
\int_0^\infty (t+1) e^{-t} dt = 2
$$

The conditional survival function is

$$
R(x \mid t) = \Pr(T > x + t \mid T > t) = \frac{(t + x + 1)e^{-(t + x)}}{(t + 1)e^{-t}} = \frac{t + x + 1}{t + 1}
$$

The mean residual life is

$$
MRL(t) = \int_0^\infty R(x \mid t) \, dx = 1 + \frac{1}{t+1}
$$

We see that $\mathsf{MRL}(t)$ is equal to 2 (= MTTF) when $t = 0,$ that $\mathsf{MRL}(t)$ is a decreasing function in $t,$ and that $\mathsf{MRL}(t)\to 1$ when

 $\hskip1cm t \to \infty.$ Marvin [Rausand,](http://www.ntnu.no/~marvinr) March 14, 2006 $t\to\infty$.

System [Reliability](http://www.ntnu.no/ross/srt) Theory (2nd ed), Wiley, ²⁰⁰⁴ – ²⁰ / ³¹

e

Discrete [distributions](#page-20-0)

[Binomial](#page-21-0)

[Geometric](#page-22-0)

[Poisson](#page-23-0) process

Life [distributions](#page-25-0)

Discrete distributions

Marvin [Rausand,](http://www.ntnu.no/~marvinr) March 14, ²⁰⁰⁶

System [Reliability](http://www.ntnu.no/ross/srt) Theory (2nd ed), Wiley, ²⁰⁰⁴ – ²¹ / ³¹

- [Introduction](#page-1-0)
- **Discrete** [distributions](#page-20-0)
- [Binomial](#page-21-0)
- [Geometric](#page-22-0)
- [Poisson](#page-23-0) process
- Life [distributions](#page-25-0)

Binomial distribution

The *binomial situation* is defined by:

- 1.We have n independent trials.
- 2.Each trial has two possible outcomes A
- 2. Each trial has two possible outcomes A and A^* .
3. The probability $\Pr(A) = p$ is the same in all the n trials.

The trials in this situation are sometimes called *Bernoulli trials*. Let X denote the number of the n trials that have outcome $A.$ The distribution of X is The distribution of X is

$$
\Pr(X = x) = \binom{n}{x} p^x (1-p)^{n-x} \quad \text{for } x = 0, 1, \dots, n
$$

where $\binom{n}{x} = \frac{n!}{x!(n-x)!}$ is the binomial coefficient.

The distribution is called the *binomial distribution* (n,p) *,* and we sometimes write $X \sim \mathsf{bin}(n, p).$ The mean value and the variance of X are

$$
E(X) = np \qquad \text{var}(X) = np(1-p)
$$

Marvin [Rausand,](http://www.ntnu.no/~marvinr) March 14, ²⁰⁰⁶

Discrete

[distributions](#page-20-0)

[Binomial](#page-21-0)

[Geometric](#page-22-0)

[Poisson](#page-23-0) process

Life [distributions](#page-25-0)

Geometric distribution

Assume that we carry out ^a sequence of Bernoulli trials, and wantto find the number Z to find the number Z of trials until the first trial with outcome A .
If $Z = z$, this means that the first $(z - 1)$ trials have outcome A^* , and that the first A will occur in trial z . The distribution of Z is

$$
Pr(Z = z) = (1 - p)^{z - 1}p \quad \text{for } z = 1, 2, ...
$$

This distribution is called the *geometric distribution*. We have that

$$
\Pr(Z > z) = (1 - p)^z
$$

The mean value and the variance of Z are

$$
E(Z) = \frac{1}{p}
$$

var(X) =
$$
\frac{1-p}{p^2}
$$

Marvin [Rausand,](http://www.ntnu.no/~marvinr) March 14, ²⁰⁰⁶

System [Reliability](http://www.ntnu.no/ross/srt) Theory (2nd ed), Wiley, ²⁰⁰⁴ – ²³ / ³¹

Discrete

[distributions](#page-20-0)

[Binomial](#page-21-0)

[Geometric](#page-22-0)

[Poisson](#page-23-0) process

Life [distributions](#page-25-0)

Consider occurrences of a specific event ${\mathcal A}$, and assume that

- 1. The event $\mathcal A$ may occur at any time in the interval, and the probability of ${\cal A}$ occurring in the interval $(t,t+\Delta t]$ is independent of t and may be written as $\lambda \cdot \Delta t+o(\Delta t)$, where λ is a positive constant.
- 2.The probability of more that one event A in the interval $(t, t + \Delta t]$ is $o(\Delta t)$.
- 3. $\;$ Let $(t_{11}, t_{12}], (t_{21}, t_{22}], \ldots$ be any sequence of disjoint intervals in the time period in question. Then the events " ${\cal A}$ occurs in $(t_{j1}, t_{j2}]$," $j = 1, 2, \ldots$, are independent.

Without loss of generality we let $t = 0$ be the starting point of the process.

Discrete

- [distributions](#page-20-0)
- [Binomial](#page-21-0)
- [Geometric](#page-22-0)

[Poisson](#page-23-0) process

Life [distributions](#page-25-0)

Let $N(t)$ denote the number of times the event ${\cal A}$ occurs during
the intense left of the steelestic excess (N(t) to a) is selled the interval $(0, t]$. The stochastic process $\{N(t), t\geq 0\}$ is called a Homogeneous Poisson Process (HPP) with rate $\lambda.$

The distribution of $N(t)$ is

$$
\Pr(N(t) = n) = \frac{(\lambda t)^n}{n!} e^{-\lambda t} \quad \text{for } n = 0, 1, 2, \dots
$$

The mean and the variance of $N(t)$ are

$$
E(N(t)) = \sum_{n=0}^{\infty} n \cdot \Pr(N(t) = n) = \lambda t
$$

var $(N(t)) = \lambda t$

Marvin [Rausand,](http://www.ntnu.no/~marvinr) March 14, ²⁰⁰⁶

System [Reliability](http://www.ntnu.no/ross/srt) Theory (2nd ed), Wiley, ²⁰⁰⁴ – ²⁵ / ³¹

Discrete [distributions](#page-20-0)

Life [distributions](#page-25-0)**[Exponential](#page-26-0) [Weibull](#page-28-0)**

Life distributions

Marvin [Rausand,](http://www.ntnu.no/~marvinr) March 14, ²⁰⁰⁶

System [Reliability](http://www.ntnu.no/ross/srt) Theory (2nd ed), Wiley, ²⁰⁰⁴ – ²⁶ / ³¹

Discrete [distributions](#page-20-0)

Life [distributions](#page-25-0)[Exponential](#page-26-0)

[Weibull](#page-28-0)

Exponential distribution

 Consider an item that is put into operation at timeConsider an item that is put into operation at time $t = 0$.
Assume that the time to failure T of the item has probability density function (pdf)

$$
f(t) = \begin{cases} \lambda e^{-\lambda t} & \text{for } t > 0, \ \lambda > 0\\ 0 & \text{otherwise} \end{cases}
$$

This distribution is called the exponential distribution with parameter λ , and we sometimes write $T \sim \exp(\lambda)$.

The survivor function of the item is

$$
R(t) = \Pr(T > t) = \int_t^\infty f(u) \, du = e^{-\lambda t} \quad \text{for } t > 0
$$

The mean and the variance of T are

$$
\begin{array}{rcl} \text{MTTF} & = & \int_0^\infty R(t) \, dt = \int_0^\infty e^{-\lambda t} \, dt = \frac{1}{\lambda} \\ \text{var}(T) & = & 1/\lambda^2 \end{array}
$$

Marvin [Rausand,](http://www.ntnu.no/~marvinr) March 14, ²⁰⁰⁶

System [Reliability](http://www.ntnu.no/ross/srt) Theory (2nd ed), Wiley, ²⁰⁰⁴ – ²⁷ / ³¹

Discrete [distributions](#page-20-0)

Life [distributions](#page-25-0)

[Exponential](#page-26-0)

[Weibull](#page-28-0)

The failure rate function is

$$
z(t) = \frac{f(t)}{R(t)} = \frac{\lambda e^{-\lambda t}}{e^{-\lambda t}} = \lambda
$$

The failure rate function is hence constant and independent of time.

Consider the conditional survivor function

$$
R(x \mid t) = \Pr(T > t + x \mid T > t) = \frac{\Pr(T > t + x)}{\Pr(T > t)}
$$

$$
= \frac{e^{-\lambda(t+x)}}{e^{-\lambda t}} = e^{-\lambda x} = \Pr(T > x) = R(x)
$$

^A new item, and ^a used item (that is still functioning), will therefore have the same probability of surviving ^a time interval of length $t.$

A used item is therefore stochastically *as good as new*.

Discrete [distributions](#page-20-0)

Life [distributions](#page-25-0)

[Exponential](#page-26-0)

[Weibull](#page-28-0)

Weibull distribution

The time to failure T of an item is said to be Weibull distributed with parameters α and λ [T \sim Weibull (α, λ)] if the distribution function is ^given by

$$
F(t) = \Pr(T \le t) = \begin{cases} 1 - e^{-(\lambda t)^{\alpha}} & \text{for } t > 0\\ 0 & \text{otherwise} \end{cases}
$$

The corresponding probability density function (pdf) is

$$
f(t) = \frac{d}{dt}F(t) = \begin{cases} \alpha \lambda^{\alpha} t^{\alpha - 1} e^{-(\lambda t)^{\alpha}} & \text{for } t > 0\\ 0 & \text{otherwise} \end{cases}
$$

Marvin [Rausand,](http://www.ntnu.no/~marvinr) March 14, ²⁰⁰⁶

System [Reliability](http://www.ntnu.no/ross/srt) Theory (2nd ed), Wiley, ²⁰⁰⁴ – ²⁹ / ³¹

Weibull distribution (2)

Discrete[distributions](#page-20-0)

Life [distributions](#page-25-0)**[Exponential](#page-26-0) [Weibull](#page-28-0)**

The survivor function is

$$
R(t) = \Pr(T > 0) = e^{-(\lambda t)^{\alpha}} \quad \text{for} \quad t > 0
$$

and the failure rate function is

$$
z(t) = \frac{f(t)}{R(t)} = \alpha \lambda^{\alpha} t^{\alpha - 1} \quad \text{for} \quad t > 0
$$

Marvin [Rausand,](http://www.ntnu.no/~marvinr) March 14, ²⁰⁰⁶

Weibull Distribution (3)

[Introduction](#page-1-0)

Discrete[distributions](#page-20-0)

Life [distributions](#page-25-0)[Exponential](#page-26-0)**[Weibull](#page-28-0)**

The mean time to failure is

$$
\text{MTTF} = \int_0^\infty R(t) \, dt = \frac{1}{\lambda} \Gamma\left(\frac{1}{\alpha} + 1\right)
$$

The median life t_{m} is

$$
R(t_{\rm m}) = 0.50 \quad \Rightarrow \quad t_{\rm m} = \frac{1}{\lambda} \ (\ln 2)^{1/\alpha}
$$

The variance of T is

$$
\text{var}(T) = \frac{1}{\lambda^2} \left(\Gamma\left(\frac{2}{\alpha} + 1\right) - \Gamma^2 \left(\frac{1}{\alpha} + 1\right) \right)
$$

Note that MTTF $/\sqrt{\mathsf{var}(T)}$ is independent of $\lambda.$

Marvin [Rausand,](http://www.ntnu.no/~marvinr) March 14, ²⁰⁰⁶

System [Reliability](http://www.ntnu.no/ross/srt) Theory (2nd ed), Wiley, ²⁰⁰⁴ – ³¹ / ³¹