

Beam Loss Monitors

ERL requirements

BLM designs

- Ionization chambers
- Long ionization chambers
- Secondary emission monitors
- PIN diodes
- Photomultiplier with bulk scintillator
- Bare photomultiplier
- Photomultiplier with fibers

Examples

- JLAB FEL
- SNS, Oak Ridge
- FLASH, DESY

Basics

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

Hazards

• **Direct mechanical damage** (heat load on vacuum chambers and components)

• Indirect damage

by showers/radiation field (electronics, optical components, permanent magnets)

Radio-activation

of accelerator parts (may prevent hands-on maintenance)

• Quenches

of superconducting components (magnets: damage/downtime, cavities: fast beam losses)

- Fast machine protection system needed: response time few microseconds (cables!)
- Shielding and precise control even of low beam losses needed
- Hands-on maintenance: no more than 1 mSv/hour residual activation (30 cm from surface, after 4 h cooldown)

100 rem = 1 Sv 100 rad = 1 Gy

Electronic interactions in matter

ERL Instrumentation Work

Photonic interactions in matter

ERL Instrumentation Work

ERL requirements

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

Hi-flux mode

$$\begin{split} &\mathsf{E}_{\mathsf{beam}} = 5 \; \mathsf{GeV} \\ &\mathbf{I}_{\mathsf{beam}} = 100 \; \mathsf{mA} \\ &\mathsf{P}_{\mathsf{beam}} = 500 \; \mathsf{MW} \end{split}$$

 $Q_{bunch} = 77 \text{ pC}$ $f_{bunch} = 1.3 \text{ GHz}$
$$\label{eq:constraint} \begin{split} \epsilon_{norm} &= 0.3 \text{ mm·mrad} \\ \delta_{rms} &= 0.2 \cdot 10^{-3} \end{split}$$

Beam loss goals

```
15 nA (relative: 1.5·10<sup>-7</sup>)
5 W
```

Behind collimators:

~1 pA/m ~5 mW/m 6·10⁶ electrons / (s · m) 5·10⁻³ electrons / (bunch · m) **may lose an electron from a bunch each 200 m**

- Assume an average loss of 1 W/m (200 pA/m at 5 GeV)
- Fluka simulation → dose rate at BLM:
 63 Gy/h = 550 kGy/a (if machine is running 24/7)
- aim at few 100 kGy/a

More Rough Estimates

Insertion device radiation dose

- similar Fluka simulation for the dose deposited in undulator magnets
- goal: no more than 10 Gy/d to avoid loss of magnetization
- maximum average beam loss allowed: ~60 fA/m

BLM sensitivity range

- Lower bound: must detect 1% of 60 fA/m loss
 → ~200 µGy/h at BLM
 → ~10 µGy/h at BLM for unfavorable position
- Upper bound: may saturate above 1 W/m → ~60 Gy/h at BLM
- Range: 10 µGy/h vs. 60 Gy/h
 → ~10⁷ (but not in one location)

• Time resolution

must detect beam loss within ${\sim}1~\mu\text{s}$

• RAMI

reliability, availability, maintainability, inspectability

• Self-test

periodic functionality / calibration check

• Cost

as cheap as possible

BLM designs: Ionization Chamber

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

- Very radiation hard (no plastics or optical components)
- Medium sensitivity
- High dynamic range (10⁵-10⁸)
- Slow ion collection (electrons collected in few µs, ions in several 10 µs up to ms)
- Calibration simple (determined by geometry, relatively independent of HV)
- No simple self-test

FNAL Ionization Chamber

• inner electrode

diameter 1/4" (0.64 cm), usually +

outer electrode diameter 1.5" (3.81 cm), usually –

• filling

110 cm³ argon, ~1 bar (zero electron affinity \rightarrow fewer recombinations)

electron signal

drift velocity at 2 kV: 5 mm/ μ s \rightarrow signal rise time few μ s

ion collection

collection time ~600 μs at 3 kV \rightarrow early saturation at high loss rates

price
 ~450 \$ (2002)

R. E. Shafer (TechSource, Inc.) R. Witkover, D. Gassner (SNS)

SNS Ionization Chamber

- improved FNAL design
- better HV design \rightarrow up to 3.7 kV
- bigger diameter of inner electrode 1" instead of ¼", (2.54 cm instead of 0.64 cm)
- faster ion collection (1/e: 20 µs)
- better collection efficiency
- price: ~800 \$ (2002 estimate)

R. Witkover, D. Gassner (SNS)

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

LHC Ionization Chamber

- parallel aluminum electrodes, 5 mm spacing
- length: ~60 cm
- diameter: ~9 cm
- volume: 1.5 l
- filling: N₂ at 110 kPa (1.1 bar)
- high voltage: 1.5 kV
- ion collection time: 200 μs
- ~3600 pieces in LHC

B. Dehning, M. Stockner (CERN)

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

BLM designs: Long Ionization Chamber

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

- long gas-filled coax cable
- relatively low HV (typically 200 V to 500 V)
- typical length: 30–100 m (SLAC original: 3 km!)
- longitudinal loss position from signal propagation time (resolution ~1 m)
- fast: signal decay < 1 µs possible
- sensitivity comparable to discrete ion chamber
- leakage currents: < 1 pA/m
- radiation hard (careful with choice of insulation and spacer!)
- cheap

PLIC Panofsky Long Ion Chamber

> LION / LIC Long Ion Chamber

- Speed of light in cable: >0.9c
- Beam loss position to time: $\Delta t \approx 2\Delta z/c$
- Sampling rate: 100 MHz $\rightarrow \Delta z \approx 1.5$ m
- Maximum length determined by bunch spacing T $L_{max} \approx 1/2 \text{ T} \cdot \text{c}$ $L_{max} \approx 150 \text{ m}$ at T=1 µs (1 MHz)
- obviously, no position information for CW operation

APS Long Ionization Chamber

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

ELBE Long Ionization Chamber

- 1.3 cm diameter air-filled coax cable
- 1 kV high voltage
- distance to beamline ~20 cm
- slow readout (100 ms integration)
- 1 long cable for machine protection
- 28 short cables for diagnostics (50 cm each)

P. Michel, A. Büchner (ELBE)

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

BLM designs: PIN Diode

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

PIN (Photo-)Diode

- diode with 3 sandwiched layers:
 p doped intrinsically conducting n doped
- reverse biased (typ. 24 V)
- thick depletion zone without free charges ($\sim 100 \ \mu m$)
- ionizing radiation creates electron−hole pairs
 → current flow
- high specific sensitivity (3.6 eV/electron-hole pair), but small active volume (0.1–15 mm³)
- used at HERA in coincidence counting mode (two diodes back-to-back) to avoid counting photons from SR background
- tests for HERA: no damage for > 1 MGy

BLM designs: Secondary Emission Monitor

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

CERN SEM

- diameter: 8.9 cm
- length: 15 cm
- electrodes: 250 µm Ti
- high voltage: ~1.5 kV
- high vacuum required to avoid ionization current: better than 10⁻² Pa (10⁻⁴ mbar)
 → integrated NEG ST707 foil to adsorb H₂
- fast (ns)
- good linearity
- low sensitivity
- radiation hard (some 10 MGy/a expected)
- ~300 used at LHC

D. Kramer, B. Dehning (CERN)

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

Aluminum Cathode Electron Multiplier

- conventional photomultiplier tube with aluminum cathode (coated end window)
- high gain (Thorn EMI 9841: ~3000 electrons per primary reaching the cathode)
- radiation hard
- no off-the-shelf device \rightarrow expensive
- 18 used at FLASH in places of high expected losses (collimators, dipoles)

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

aluminum cathode

BLM designs: Photomultiplier with Bulk Scintillator

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

Scintillator Types

• Inorganic crystals

e.g. NaI, CsI with various dopants ~ radiation hardness: varying; 1/e after 1–10 kGy (CsI)

- cost: very expensive

CsI used at LEDA, Los Alamos (commercial PMT-scintillator combination from Bicron); several types used in HEP detectors

• Liquid scintillators

organic scintillator in organic solvent, e.g. xylene, toluene, ...

+ radiation hardness: 1/e after several 100 kGy or MGy

~ cost: liquid cheap, casing expensive

safety: flammable (flash point -10 to +110 °C), some toxic
 BLMs at LANSCE, Los Alamos (commercial PMT-scintillator combination from Bicron); paint can BLMs at Fermilab/Los Alamos (phased out)

Plastic scintillators

organic scintillator dissolved in polymer base, e.g. polyvinyltoluene, polystyrene, ...

- radiation hardness: 1/e after several kGy to few 10 kGy
- + cost: cheap
- + handling: can cut arbitrary shapes

BLMs at FLASH, DESY (commercial PMT, inhouse assembly)

scintillator

Plastic Scintillators

aluminum foil

black plastic foil adhesive tape

B. Michalek (DESY)

test pulse LED

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

Scintillator Panels at FLASH

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

• Extremely sensitive

(electrons lose ~2 MeV/cm in scintillator, ~100 eV/photon \rightarrow 20000 photons/cm)

• Very flexible

(arbitrary scintillator shapes \rightarrow variable light output, variable high voltage \rightarrow gain variation by 10³)

• Very fast

time resolution of few ns

• Radiation damage problematic

crystals too expensive plastics unsuitable for high radiation areas liquid scintillator better, but safety concerns

• Expensive

HV crate (~100 channels)	ך € 5000	
HV boards, per channel	250 €	
PMT	1000 € >	- ~ 3000 € / piece + cabling
housing, mounting	1000 €	+ electronics
scintillator + assembly	500 € J	

BLM designs: Bare Photomultiplier

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

Bare PMT

- JLAB FEL: detect Čerenkov light in PMT glass
- cheap 931B PMT, mainly blue sensitive
- quite radiation tolerant, darkening of glass compensated by HV (~10% HV change needed this far)
- cheap housing (1.5" plastic water pipes)
- controls strong beam losses, trip level: 1 µA CW loss (160 W)
- for protection of insertion devices: additional ion chambers

Kevin Jordan, JLAB

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

BLM designs: Photomultiplier With Fibers

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

Čerenkov Fibers @ FLASH

- 4 thick, radiation-hard fibers
- Čerenkov light read out by PMTs
- Longitudinal beam loss position from light propagation time
- Transverse beam loss position from correlation of 4 fibers

• Fiber

radiation hard (several 10 MGy) 300 µm core diameter multi-mode, step-indexed made by Heraeus length: 35 m

- Photomultiplier
 Hamamatsu H6780-02
- M. Körfer (DESY), W. Goettmann, F. Wulf (HMI), J. Kuhnhenn (FhG)

FODO Structure

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

Longitudinal Beam Loss Position

- Speed of light in fiber: ~2/3 c
- Beam losses by same bunch: $\Delta t \approx 5/2 \cdot \Delta z/c$
- Sampling rate: 1 GHz $\rightarrow \Delta z \approx 12$ cm
- Maximum fiber length determined by bunch spacing T $L_{max} \approx 3/5 \text{ T} \cdot \text{c}$ $L_{max} \approx 180 \text{ m}$ at T=1 µs (1 MHz)
- obviously, no position information for CW operation

- Difference between left/right and top/down fibers gives transverse information (for symmetric geometry!)
- Accurate cross-calibration of PMTs important

Fiber Placement

Fibers embedded in FLASH undulator vacuum chamber

U. Hahn

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

Scintillating Fibers

- Commercially available: 250 µm to 5 mm diameter plastic scintillator core, one or two cladding layers of lower refractive index
- Trapping efficiency 3–7%
- High light output: ~8000 photons/MeV
- Attenuation length:
 ≤ 3 m → not suited for long BLM
- Same radiation damage as bulk plastic scintillator

Bicron catalog

Liquid-Core Scintillating Fibers

- Glass capillaries filled with organic liquid scintillator
- Diameter: down to 20 µm
- Trapping efficiency: ~8%
- Attenuation length:
 ≤ 3 m → not suited for long BLM
- Radiation hardness: ~1 MGy
- Used in particle physics detectors (e.g. CHORUS, CERN)

Examples: JLAB FEL

160 MeV electrons • 10 mA • 1.6 MW

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

JLAB BLM System

- 48 cheap PMTs without scintillator (Čerenkov light)
- Trip level based on integrator with fixed threshold (~25 mA·s)
- Calibration:
 - Run 1 μ A CW beam into vulnerable location
 - Raise HV until BLM trips
 - Periodic check with internal test LED
 - Darkening and aging of PMTs compensated by HV (~10% max.)
- Some PMTs available as floaters \rightarrow movable loss diagnostic
- 2 ionization chambers for wiggler protection (trip level: 2 Gy/h)
- Low energy injector:
 - Gamma probes as field emission diagnostic (for DC gun commissioning)
 - Sensitive ion pump current monitors (<1 MeV)

JLAB Analog Monitoring System

- 256 X 32 full cross point switch for AMS and video (BW > 1 MHz)
 - **AMS in:** 48 analog BLM signals
 - AMS out: several Tek scopes with video output
 - Video in: video from Tek scopes
 - Video out: 32 outputs driving ~100 monitors, 8 web channels

System IN and OUT signal overlaid, 2V P-P, left 1 MHz, right 10 MHz

K. Jordan (JLAB)

32 X 32 cross point chassis

front view of 256 X 32 Configuration

rear view with cables

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

Examples: SNS

1 GeV protons • 1.4 mA • 1.4 MW

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

SNS BLM System

Beam Loss Monitor (BLM)

- ionization chamber
- steel casing against low energy x-rays
- detects only local, huge losses

Neutron Detector (ND)

- photomultiplier with neutron-sensitive scintillator
- detects even remote, small losses

SNS BLM System

2 thresholds per BLM

- low threshold against slow losses (10 s) 1 W/m criterion due to activation
- high threshold against fast losses (10 µs)

sensitivity range

- lower limit
 1% of 1 W/m
 → 300 pA
- upper limit local 20 kW loss (1% beam power) → 600 µA
- span: 2·10⁶

Examples: FLASH

1 GeV electrons • 72 μ A • 72 kW

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

Beam Loss Monitors

- fast machine protection system: response time <4 µs incl. cables
- operation limited by beam and dark current losses in undulators (< 10 Gy/d)
- radiation damage in scintillators at BC2 observed (dark current)

63 photomultipliers with scintillator panels

18 aluminum cathode electron multipliers

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

BLM Display

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

Summary

ERL Instrumentation Workshop, Cornell University, 2-3 June 2008

(Roughly) Estimated Sensitivities

•	Ionization chamber:	70 μC/Gy	
	$S \approx active mass \cdot charge per ionization energy \approx V \cdot \rho \cdot e/E_{ion} \approx$	1 · 1.8 g/l · e / 26 eV	
•	Long ionization chamber: 1 meter length, 1 cm radius, argon	20 µC/Gy	
•	PIN diode: 1 cm ² surface, 100 μm depletion depth	6 μC/Gy	
•	S ≈ active mass · charge per excitation energy ≈ A·d·p·e/E _{ion} Secondary emission monitor: 100 cm ² surface, 0.01 average secondary emission yield (SEY S ≈ surface · SEY · electron charge · density of primaries per ≈ 100 cm ² · 0.01 · e · 1/(2 MeV·cm ² /g)	500 pC/Gy $300 pC/Gy$	
•	Aluminum cathode electron multiplier: 10 cm ² surface, 0.01 average secondary emission yield (SEY) S \approx surface \cdot SEY \cdot electron charge \cdot density of primaries per \approx 10 cm ² \cdot 0.01 \cdot e \cdot 1/(2 MeV \cdot cm ² /g) \cdot 10 ⁵	5 μC/Gy , tube gain 10 ⁵ dose · gain \approx A · SEY · e · (ρ/(dE/dx))	. _G Radiation damage
•	PMT with organic scintillator: 1 liter scintillator, 60% collection efficiency, 30% photocathod $S \approx$ active mass \cdot photon yield per energy \cdot collection efficiency $\approx V \cdot \rho \cdot Y \cdot C \cdot P \cdot G \cdot e = 1 \cdot 1 g/cm^3 \cdot 1/(100 eV) \cdot 0.6 \cdot e$	200 C/Gy ← le efficiency, tube gain 10 ⁵ cy · photocathode efficiency · gain · ele 0.3 · 10 ⁵ · e	problematic!
•	Bare PMT (Čerenkov light): 10 cm ² surface, 1 mm thick, 30% photocathode efficiency, tu S \approx active volume \cdot density of primaries per dose \cdot photon yie $\approx A \cdot d \cdot \rho \cdot (\rho/(dE/dx)) \cdot Y \cdot P \cdot G \cdot e \approx 1$ cm ³ $\cdot 1/(2$ MeV of	4 mC/Gy be gain 10^5 eld per length \cdot photocath. efficiency \cdot g m ² /g) \cdot 260/cm \cdot 0.3 \cdot 10 ⁵ \cdot e	gain \cdot electron charge
•	PMT with Čerenkov fiber: 1 meter length, 100 µm radius, 2% collection efficiency, 30% S \approx active volume \cdot density of primaries per dose \cdot photon vie $\approx \pi r^2 \cdot L \cdot \rho \cdot (\rho/(dE/dx)) \cdot Y \cdot C \cdot P \cdot G \cdot e \approx 31 \text{ mm}^3 \cdot 1/(2)$	2 μC/Gy photocathode eff., tube gain 10 ⁵ eld per length · coll. eff. · photoc. eff. · 2 MeV·cm ² /g) · 260/cm · 0.02 · 0.3 · 10	gain · electron charge) ⁵ · e
	Flexible gain \rightarrow linearity and calibration problematic!		
ERL	Instrumentation Workshop, Cornell University, 2-3 Jur	ne 2008	Lars Fröhlich, DESY

