

1

LHC Beam Loss Monitor

Post Mortem & Memory Requirements

Design Considerations 2:

12/03/03: LHC-BLM-ES-001.00

POST-MORTEM ANALYSIS (chap. 6.9 & 9.8)

- In case of a beam dump, the BLM system should help answering the following questions:
 - → is the beam dumping clean or were there unexpected losses around the machine?
 - → what is the cause of the dump action: beam losses triggering the BLM or internal magnet quench protection interlocks? Other machine interlocks without prior beam losses?
- The signals of all monitors should be buffered for the last 100 1000 turns, such that they can be read out and analysed after a beam-dump. In addition, the average rates of all monitors should be easily available for time scales of a few seconds and 10 minutes before a beam-dump.

PM equipment "categories"

13/12/01: General ideas on the PM system (J. Wenninger)

We can sub-divide the various LHC systems into the following categories:

- <u>Triggered systems (via specific external event) :</u>
 - beam instrumentation
 - power converter system
 - RF system
 - ...
- <u>Self-triggered systems :</u>
 - quench protection system
 - beam dump system
 - power converter system (on faults ?)
 - ...
- Non-triggered systems :
 - Interlock system, BIC & PIC

Protection Systems

LHC Workshop, Charmonix XI-8.4; R. Lauckner

• Transient

→ System required to record fast signals and freeze on trigger

Logging

→ System required to continuously (on time or on change) record slow or infrequent changes

• Alarms

→ System required to send fault events to the Central Alarm Server, (CAS).

• External Trigger

→ System required to respond to general PM trigger

Internal Trigger

→ System required to autonomously record all protection actions

Date

→ Operational for Sector Test or Beam Commissioning

LHC Workshop, Charmonix XI-8.4; R. Lauckner

• The correct functioning of all these systems is required to ensure proper protection of equipment.

(Beam Dumping System, Beam Loss Monitors, Energy Extraction Switches, Quench Protection, etc)

Beam Loss Monitors:

They are included here as a critical part of the machine protection system, their status should be logged.
Beam loss information should be recorded at 100 Hz, depth 20s

or

Beam Loss 2000 channels * 100Hz * 20s = 4E6 values

(Note: Beam Position 2000 channels * 1000 T = 2 E6 values)

Threshold Comparator (1)

Threshold Comparator System Using Sum-Registers

- Observation Time-Windows
 - Adding newest data
 - Subtracting oldest data
 - Capacity of FIFO
- Th & W table values depending on:
 - Beam Energy
 - Ion. Chamber Position
 - Time-Window

Read 2 values from a table of 576 values

- **Comparisons on chip**
 - 96 times in parallel (6 TimeWind.*16 Ion)

• Acquisition every 40µs:

- → 25 KHz
- → 16 Ion. Chambers per Card.
- → 8 bit values
- 1024K x 36bit SRAM can hold 10.24s of data
 - → Write Clock = 400 KHz & Read Clock = 2.4 MHz
 - → 10 seconds need 250K x 8bit per Ion. Chamber.
- Acquisition every 90µs (1 turn):
 - → 11 KHz
 - → 16 Ion. Chambers per Card.
 - → 8 bit values
- 1024K x 36bit SRAM can hold 23.04s of data
 - → Write Clock = 180 KHz & Read Clock = 1.1 MHz
 - → 10 seconds need 110K x 8bit per Ion. Chamber.

*Note that 2 SRAMs can be available to keep the data under manipulation and 1 SRAM for PM.

Threshold Comparator (2)

Threshold Comparator System Using Consecutive Sums

- Disadvantages:
 - → Slower update rate

• Advantages:

- → Sums are available constantly for comparison
- → Ability for comparisons up to 100s+
- → TC can have a lot more intermediate time windows.

When A has been filled with 10 acquisition values, the sum of them is appended as a value to B. When B has been filled with 10 values, the sum of them is appended as a value to C, and so on. In that way sums of tenths, hundreds, thousands, millions, ... of values are created and kept.

Quench Levels as a number of clocks

CFC		Beam Loss SPS		
Frequency	0.1 - 5.00E+06 Hz	Length	19cm	
Current	20 - 1.00E+06 pA	Surface	63cm ²	
Dynamic	5.00E+07	Volume	1000cm ³	
Resolution	200 pC/clock	Resolution	2500ch./Mip	
	1.25E+09 elect./clock	High Voltage	1500V	
	5.00E+05 Mips/clock	Rise Time	~100ns	
Clock max	5.00E+02 clock/0.1ms	Fall Time	~100µs	

Fluence		.45TeV		7TeV	
		min	max	min	max
BL ARC	Mips/cm²/p	5.00E-04	3.00E-03	8.00E-03	4.00E-02
	Mips/63cm²/p	3.15E-02	1.89E-01	5.04E-01	2.52E+00

Quench Levels as number of clocks

Christos Zamantzas