# Operational scenario of the BLM System

#### L. Ponce

With the contribution of

B. Dehning, M. Sapinski, A. Macpherson, J. Uythoven, V. Kain, J. Wenniger, R. Schmidt, BLM team, MPSCWG,...

## Questions addressed

- 1. Strategy for operation of the BLM System
- 2. Operation with less than 4000 channels available
- 3. Mobile BLMs
- 4. Requested tests without and with beam

# Outline

- Presentation of the system
- Initial settings of the thresholds
- Changing threshold
- Availability of the system
- Requested tests

## 1. Operation of the BLM system

BLMs are part of the machine protection system:

> to protect LHC from losses, the only system for fast losses between 0.3 and 10 ms.

- The system should prevent quenches and give a limited number of false dumps : operational efficiency
- All BLMs are interlocked and
- interlock is triggered if any one of signal is over threshold (based on HERA experience)
- There are 3 groups of monitors in terms of thresholds settings :

>For cold elements ( thresholds based on quench level)

>For warm elements (thresholds based on the element damage level)

>Mobile monitors (spare channels, not interlocked)

# BLM for quench prevention



- 6 monitors per quadrupoles (arcs +LSS) + some on DS dipoles
- Beam dump threshold set relative to the quench level (margin depends on uncertainty on quench level knowledge)
- Consists of about 3200 Ionisation chambers

## BLM for warm elements



- BLM in LSS : at collimators, warm magnets, MSI, MSD, MKD, MKB, all the masks...
- Beam dump threshold set relative to element damage level (need equipments experts to set the correct values)
- Consisting of about 200 IC + 300 IC-SEM pairs

## BLM system : signal chain



- 8 channels per tunnel card, 2 tunnel cards per surface card and 335 surface cards = 6400 channels (4500 connected to monitors)
- To follow the quench levels curves, depending on beam energy and loss duration, 12 integration periods for 32 beam energy levels per monitor
- For a given beam energy regime (32 sampling values), a signal from the 12 integration intervals is over threshold, beam dump request is generated via the BIC

## Mobile BLMs

#### Mobile BLMs

- Monitors are the spare Ionisation Chambers
- use the spare channels per tunnel card (total of 1900):
  - 2 at each quad in the arcs, a bit more complicated in the LSS because of more elements.
- Electronics from the tunnel card is commissioned for all 6400 channels
- All the spare channels/card are predefined in databases to allow configuration/use without touching the threshold tables
- BUT need access to connect the extra chambers to the tunnel card
- Can cover a half-cell every 3-m if 2 chambers per channel using also spare optical fibres
- Mobile monitors do not generate interlocks
- He leak detection :
  - at nominal intensity, signal at the nominal vacuum pressure is a factor 6 above the minimum BLMS sensitivity

#### Software overview



LTC 01/2008

#### Schematic representation of the database implementation



LTC 01/2008

# Initial settings: APPLIED table

- For each surface card, a table of 16\*32\*12 threshold values is loaded in the FPGA: APPLIED table
- The APPLIED threshold table is set to:
  - > 30 % of the quench levels for cold elements
  - > relative to the damage level for warm elements
- The APPLIED table is an LSA ORACLE database view derived from configuration tables stored within LSA database (details in the minutes of the 13<sup>th</sup> MPSCWG) by applying constraints.
- MPS requirement: redundant check
  - > APPLIED table is sent to front-end using MCS
  - > APPLIED table is read back for comparing with the one in the database:
  - > Comparison is triggered after every change and before each fill
  - > Beam permit given only by front-end when comparison result is OK
- BLM monitor thresholds are trim able individually or by families with a recorded trim history

# Initial settings: MASTER table

- For machine protection, it is necessary to have a "garde-fou" for the trim. Therefore, in the LSA database, there is also a so-called "MASTER" table (same dimensions as the APPLIED one)
- The MASTER table is a ORACLE database view generated from the same configuration tables as for the APPLIED table, not including the  $C_m$  factor
- The MASTER table is protected and set to a so-called "max safe allowed value" of the different equipment (energy and integration dependant ).
- The MASTER table values are set above the quench level parameterisation and below the estimated damage levels values
- APPLIED thresholds value for a monitor is the MASTER thresholds value multiplied by a  $C_m$  factor :  $0 < C_m < 1$
- Internal and external check within database: APPLIED table ≤ MASTER table

# Initial settings: BLM families

- Due to the large number of BLM thresholds, BLMs are grouped in families
- Definition: a family is a set of monitors which see the same level of signal for the same level of energy deposited in the coil
- =>A family is defined by the type of element to which the monitor is attached (MQ, MQM, MSD,TCTH...) and the position on this element (entrance, middle, exit, beam 1/2, outside/inside...)
- About 250 different families:

» BLMs in the arcs (~ 2200 IC) are only 6 families

> the rest (~1500 IC + 300 SEM) are for the quad in the DS, LSS and warm elements

- One thresholds table  $(32*12 \text{ values } T_f)$  is generated per family via an expert application
  - >  $T_f$  is based on damage levels (warm) or quench/damage levels (cold)
  - >  $T_f$  includes a safety factor (to be defined) to define the max allowed values

## What is required by MPS

- Comparison between the APPLIED table and the MASTER table in the DB and external, on change of MASTER table or trim of APPLIED value
- Comparison between the APPLIED table in the front end and the APPLIED table in the DB (via MCS)
- Changes in the BLM MASTER table are recorded via LSA Database snapshots and the MASTER table change is confirmed by a before-after comparison
- Whenever the MASTER table is changed, the APPLIED table is regenerated and sent to the hardware.
- The MASTER table when generated is made read only so that inadvertent change cannot be made during normal operation.
- Time required for a change in the MASTER table need to be evaluated. Requested to be less than half a day by MPS, including the checks.

#### Baseline scenario

• The MASTER table should only be changed infrequently because this is the reference backed-up table for the BLM system

• APPLIED table is set to initial recommended value using pre-defined families

• if **REALLY** needed, thresholds can be trimmed up to the max allowed value (MASTER table value)

All BLM are initially configured as unmaskable, configuring a BLM as maskable should only be done under exceptional circumstances (only one maskable CIBU per octant)

• Initially, only a group of few experts is allowed to do any change in the MASTER table and to TRIM the APPLIED table.

Possibility to differentiate between 2 roles (RBAC permissions):

trimming applied thresholds

• Changing MASTER table

## Pending questions

1. Which value for the "max safe value" in the MASTER table?

- Proposed values : 5 time the quench level (still 60 time bellow damage level for fast losses) and "Safe beam flag" for cold element?
- Damage level x margin for warm element?
- Small working group defined (D. Bocian, B. Dehning, T Kurtyka, A. Siemko)
- 2. With this strategy, MASTER table is far below the damage level for cold elements
  - too much conservative?
  - Do we want to fit better the damage level?
- 3. Who is the group of experts allow to perform the TRIM.
  - Proposal to be done by B. Dehning/OP
  - Group drawn from BLM/OP/MPS

## Status of the software

- Expert application for thresholds generation exists (ROOT scripts) and is used to fill the DB (need to convert it from expert mode to user friendly mode)
- Database : Work in progress, structure defined, prototype exists and tested during the SPS test measurements in 2007
- TRIM for thresholds changes: to be done + program on top of existing TRIM functionalities
- Comparison DB applied table against master table: to be done, standard MCS package not usable, need further development (SIS possible candidate)
- comparison applied table DB vs. applied table HW: standard MCS
- Software to compare MASTER tables (before and after change): to be done
  - Critical path : safety relevant so significant test period is necessary.

#### Availability of the BLM system

What can give a beam dump signal (safety issue):

> losses level measured by ANY OF THE monitors above the attributed threshold value

> failure of the internal reliability check (loss of communication with the chamber)

• What is needed to establish the User\_Permit (availability issue)

> connections OK : chamber connected to the correct channel + internal checks (optical line, HV, ...)

> FE thresholds table strictly equal to the LSA DB table

LSA DB APPLIED table strictly below the LSA DB MASTER table

## Possible problems, origins and solutions

| Possible<br>problems             | Signal<br>affected                | Origin                                            | Possible Solutions                                                                     | Who?                        | Safety/avail<br>ability                |
|----------------------------------|-----------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------|----------------------------------------|
| Applied<br>thresholds<br>too low | Beam dump<br>(improper<br>signal) | Wrong<br>evaluation of the<br>thresholds          | Redo the<br>simulations!<br>(need a lot of stats<br>before identifying)                | BLM team                    | Availability/<br>Safety?<br>(critical) |
|                                  |                                   | Wrong setting of the thresholds                   | Adjust the<br>thresholds within<br>predefined safe<br>margin via TRIM                  | Limited<br>experts<br>group | Availability                           |
| Internal tests<br>detect failure | Beam dump<br>(proper signal)      | Failure of a components                           | Analysis needed                                                                        | BLM team                    | Safety<br>(critical)                   |
|                                  | Beam_Permit                       | Wrong<br>connection,<br>failure of a<br>component | <ol> <li>Try to repair</li> <li>Use a spare<br/>channel</li> <li>disconnect</li> </ol> | BLM team                    | Availability                           |

#### Operation with < 4000 channels? (1/2)

- Problem 1: addressed by the possibility to trim the thresholds
- Problem 2 : Availability of the BLM system
  - > G. Guaglio Ph-D thesis : 17 false dumps per year
  - > Designed with the required redundancy, experience with the SPS...
  - > acquire statistic with the existing system on SPS and LHC as soon as available (150 days of running for the moment): analysis to be done by KEK visitor (Hitomi Ikeda)
  - EMC effect study during the hardware commissioning phase (IP6 and IP8 with kickers magnet pulsing)

Operation with < 4000 channels? (2/2)

Possibility to change status (disable or maskable) of channel via the same soft as for the Thresholds

> but need a Master table regeneration

Hardware for maskable/unmaskable is installed, but useful only below safe beam flag and a full octant is masked?



## How many channels we can lose?

• The loss can be seen by another monitor:

> the machine protection function is still OK but not the quench prevention with only one out of 3 (private assumption)

• we have to go through the different loss patterns (especially accidental case) to evaluate the protection



#### BLM tests

- Functional test (connectivity) of full acquisition chain with Radioactive Source
  - The procedure for this test will be described in a dedicated document made in collaboration with TIS. The purpose is to create a signal on the chamber with the RA source and check its presence in the corresponding DAB card channels.
  - Time estimation : 0.5 to 1 hour per front-end station (8 BLMs)
- Provoked magnet quench: (A. Koschik's presentation in Chamonix XV)
  - check steady state losses quench limit with circulating beam (part of the MPS commissioning)
  - check fast losses quench behaviour with sector test

required to give confidence in the model
 If we have no accidental beam induced quenches/dump, we will rely on simulations

## **Restricted tests**?

- Testing only a given set of BLMs with the radioactive source?
  - No: this test verifies only the monitor position
- Motivation of the quench test:
  - Verification of the correlation between energy deposition in the coil (= quench level) and BLM signal (= thresholds)
  - Verify or establish "real-life" quench levels
  - Verify simulated BLM signal and loss patterns
- => Accurately known quench levels will increase operational efficiency and improve safety

## Conclusion

- This implementation is done to allow flexibility to trim thresholds above the quench level (= operational efficiency problems) BUT always bellow the damage level (= safety problem)
- GO for implementation of BLM thresholds management, but some thresholds still need to be defined within the MPSCWG/LHCCWG
- Acquire statistics on the reliability of the BLM hardware (running continuously once installed) and
- Evaluate the applications during the coming dry runs
- > Develop strategy to run with non-working channels?
  - Action for the MPSCWG? As much as possible before start-up
  - > LHC Protection Panel during operation?