Messungen und Simulationen für das Strahlverlust-Monitor-System des LHC

<u>M. Stockner</u> und das Beam Loss Monitoring Team

Inhalt:

- Large Hadron Collider (LHC)
- Strahlverlust-Monitor-System
- Aufgaben
- Geant4 & Simulierter Detektorrespons
- 400 GeV Protonenstrahl Vergleichsmessungen
- Testmessung in gemischtem Strahlungsfeld
- Ausblick
- Zusammenfassung

OEPG-FAKT 2006 17 – 19 September, Maria Lankowitz, Steiermark

Large Hadron Collider (LHC)

- 350 MJ im Strahle gespeichert
- LHC Protonenimpuls Faktor 7 höher
- Intensität Faktor 100 höher als bei bisherigen Beschleunigern
- supraleitenden Magnete (8.3 T) 4÷20fach sensibler auf Strahlverluste

Teilchenverluste müssen minimiert und gemessen werden

- Strahlverlust-Monitor System (BLM, Beam Loss Monitoring)
- Messung der Strahlverluste außerhalb der Magneten
- Wird der Grenzwert f
 ür Strahlverluste überschritten → Dump Signal generiert.

Strahlverlust Monitor System

- Aufgaben:
 - Bei zu hohen Strahlverlusten → Signale zur Extraktion des Strahles um Beschleunigerkomponenten vor Beschädigung und die Magneten vor Verlust der Supraleitung ("quench") zu schützen.
 - Justierung der Kollimatoren
 - Lokalisieren von Strahlverlusten und Charakterisierung der Verlustmechanismen
- Herausforderungen:
 - Einzigartige Kalibrierung mittels Simulationen (bei Inbetriebnahme Faktor 5 an Genauigkeit, später Faktor 2)
 - Hohe Zuverlässigkeit (tolerierbare Fehlerrate 10⁻⁷ pro Stunde, robuster und strahlungsresidenter Detektor)
 - Großer dynamischer Arbeitsbereich (10⁸, pA mA)
 - Kurze Ansprechzeit (Abortsignal innerhalb eines Umlaufs, 100 μs)

Kalibrierung des BLM Systems

Anzahl lokal verlorener

Hadronische Schauer (Energieabgabe in Magnet)

Energiedeposition in der Beschleunigerkomponente

> Quench- und Beschädigungs-Grenzwerte als Funktion der Verlustdauer (Wärmetransport in Magnet)

Relativer Wert von Quenchbzw. Beschädigungs-Grenzwert der Beschleunigerkomponente

Aufgaben

- 1. Simulieren des Detektorresponses (Geant4)
 - Überprüfung mit Testmessungen (T2, H6)
- 2. Simulation des Detektorsignals in transversalen hadronischen Schauerausläufern
- Messung von transversalen hadronischen Schauerausläufern (HERA Protonen Beam Dump)
- 4. Vergleich von Dump Simulation und Messung

Bestimmung des Fehlers der transversalen Schauer-Ausläufer-Simulationen (Geant4)

Ionisationskammer

Neues Design der LHC Ionisationskammer: Durchmesser: 9 cm Länge: 60 cm Füllgas: N₂, 1.1 bar Volumen ~ 1.5 Liter 8 SPS Ionisationskammer: Füllgas: N₂, 1.1 bar Mass=3.8kg 30 x 0.5 mm Al Elektroden Volumen ~ 1 Liter 4000 Detektoren in Summe

CERN

 $L \approx 20$ cm, $\emptyset \approx 12$ cm

Betriebsspannung: 1500V

GEANT4

Geant4: Simulationscode für Teilchentransport in Materie

Anwendungen:

- Hochenergiephysik
- Exprimente für Nuklearphysik
- medizinische Beschleuniger
- Raumfahrt

Weltweit Kollaboration von über 100 Wissenschaftern

Objektorientiert C++

Acronym GEANT von GEometry ANd Tracking

http://geant4.web.cern.ch/geant4/index.shtml

Simulierter Detektorrespons

Detaillierte Detektorsimulation mit Geant4:

Charakterisierung des Detektors Falten mit Spektren \rightarrow Detektorsignal

- 9 verschiedene Teilchenarten (p, e⁻, ...)
- Teilchen Energien: 1 keV 10 TeV
- transversale und longitudinale Bestrahlung

Überprüfung der Simulation:

- Analytischer Vergleich mittels Bethe-Bloch Formel f
 ür Muonen Übereinstimmung;
 - 1 GeV mu⁺ : 95 %
 - 35 MeV mu⁺ : 75 %
- 2. T2 400GeV Protonen
- 3. H6 gemischtes Strahlenfeld

400 GeV Protonenstrahl Vergleichsmessungen

Transversales Scann-Experiment (SPS-T2):

Ergebnisse

Simulation:

- Strahl parallel zu Elektroden
- Verschiebung des Strahls normal zu Elektroden
- Strahlgröße: parallel = 1cm, normal = 0.5cm

	Position [mm]	e-lon p-1 cm-1	Stat. Fehler
Messung		110.06	0.06
Simulation	0 3.13	149.9 99.7	4.13 2.79
Mittelwert		124.84	12.53

Ergebnis:

- Zwischen 2 Elektroden wenig Materie (Gas) → niedrigstes Signal
- Grosse systematische Unsicherheit der Messung aufgrund der unbekannten Strahlposition relative zu den Elektroden
- Messwert liegt innerhalb der Simulationsergebnisse

10

September 17, 2006

Testmessung in gemischtem Strahlungsfeld

CERF Experimentierhalle (H6): (CERN-EU High Energy Reference Field Facility)

- früheres Experiment mit PMI (Kunststoff-Ionisationskammer) Detektoren (FLUKA, H. Vincke)
- 5 Ionisationskammern um Kupfertarget (L = 50 cm, Ø = 7 cm)
- jede Kammer sieht anders Strahlungsfeld
- 1 Kammer im niederenergetischen (einige MeV), 6 Kammer im hochenergetischen Bereich (einige GeV) des Energiespektrums

Strahlparameter:

Impuls	120 GeV/c			
Intensitaet	Bis 9.5 x 10 ⁷ Hadronen pro 16.8 s			
Gaußsches	σ _{horizontal}		1.3 cm	
Strahlprofil	σ _{vertikal}		1.0 cm	
Strahl- zusammen- setzung	π+	Protonen	K⁺	
	60.7	34.8	4.5	

Ergebnisse

Position 1

101

102

Simulation:

- FLUKA Spektren als Input
 in Geant4
- Detektoren einzeln simuliert

Ergebnis:

• Abweichung FLUKA – Messung ≈ 8%

up 10

10

10

10

- Abweichung Geant4 Messung ≈ 12%, liegt innerhalb des Fehlers
- größte Abweichung bei Position 1 ≈ 21%

Erklärung: Anzahl und Energie der Teilchen im Vergleich sehr nieder (Kunststoffwand - Stahlwand)

10-3

10-2

Beispiele für Spektren (Position 1 und 6):

photons

- neutrons

ch.hadrons

10 10² Energy [GeV] 10 La

10

10

10

dln(E)

* e'/e'

12

- photons

- neutrons

ch.hadrons

10 10² Energy [GeV]

- e'/e*

Position 6

Ausblick

HERA Protonen Beam Dump

Kalibrierung des BLM Systems für die LHC Inbetriebnahme durch Geant4 Simulationen

Verifizierung **transversaler** hadronischer Teilchenschauer-Ausläufer-Simulationen

Test der Elektronik

Testinstallation:

- 6 SPS-BLM Detektoren
- Iongitudinale Anordnung
- LHC-BLM Elektronik

von: 10¹¹ Protonen

bis: 10¹³ Protonen 13

Zusammenfassung

- Simulation des Detektorresponses und Verifizierung durch Vergleichsmessungen:
 - Testmessungen mit 400 GeV Protonen T2
 - Messung in gemischtem Strahlungsfeld H6

Teil der Kalibrierung des LHC BLM Systems

- Transversale Teilchenschauer-Ausläufer-Simulation und Auswertung der HERA Proton Beam Dump Messung nahezu abgeschlossen
- Abweichung von Dump Simulation zu Messung

Teil der Fehlerbestimmung der Kalibrierung des LHC BLM Systems

 Die gesamte Anfangskalibrierung (Faktor 5) soll bis Ende 2007 bei der in Betriebnahme des LHC abgeschlossen sein

Vielen Dank für Ihre Aufmerksamkeit!

Für weitere Informationen:

http://cern.ch/blm

