Locations of Beam Loss Monitors based on proton loss maps

Laurette Ponce (AB/BI)

Contents

1. Principle and assumptions of the simulation
2. Positioning of the monitors based on loss maps:

- in the arcs
- in the LSS

3. Special requirements

1. Principle of the simulation

- Loss maps given by R. Assmann team (C. Bracco, S. Redaelli, G. Robert-Demolaize)
- GEANT 3 simulation of the secondary shower created by a lost proton impacting the beam pipe
- scoring of the number of secondary particles entering the chamber
- then simulation of the detector response to the spectra registered in the left and right detector (M. Stockner with G4)

Geometry description

- 500 protons same z position and same energy
- impacting angle is 0.25 mrad
- longitudinal scan performed to optimize the BLM location
- Transverse impact positions: outermost, innermost, top

Right detector

Typical result

Dependence on transverse position

- about 40 \% less signal between outermost and top/innermost
- less than 10% between top and innermost
- unavoidable source of uncertainty

Transverse distributions of losses

the whole LHC

(beam 2,Hor. halo, injection optics)

Dependance on beam energy

- Position of the peak outside the cryostat independent on beam energy
- about 20 times less signal at injection inside the quad
- energy ratio depend on impacting point

Energy Deposition in Coil and Detector

- Secondaries crossing the full volume of magnet coil
- preliminary results, only 10 protons
- reached limitation of the code, need to migrate to G4.
- peak position in the coil in agreement with note 44 (40 cm from impact)

2. Position in the ARCS

- Example of topology of Loss (MQ27.R7)
- Peak before MQ at the shrinking vacuum pipe location (aperture limit effect)
- End of loss at the centre of the MQ (beam size effect)

More simulation are needed to get better evidence (higher populated tertiary halo)

Particle Shower in the Cryostat

Position of the detectors optimized to:

- catch the losses:
- MB-MQ transition
- Middle of MQ
. MQ-MB transition
- minimize uncertainty of ratio of deposited energy in the coil and in the detector
- B1-B2 discrimination

for beam 2

- Same assumptions for beam 2 for loss locations
- Same positions for the detectors wrt the physical apertures

Position after integration

Top view of SSS cryostat

"Integrated" signal seen by the BLMs

MQ23L7 for beam 2

- Low cross-talk signal
- Good discrimination between B1 and B2

Positions in the LSS

- Loss pattern in DS look like in the arcs.
- So same rules for placement in conjunction with the integration possibilities : 1 m after the interconnection bellows, 50 cm after the magnetic centre

Position in the IRs

- Loss patterns has to be checked element by element
- try to keep the same configuration as in the arcs

Positions at the triplets

another exemple

The reality!

C6R8

3. Some special requirements

- Additional monitors for MB.C13R7

Position in the DS IR7

- peak before the MQs and losses all along the magnets

For ions:

- Some special loss locations for the ions (G. Bellodi, H. Braun):

- DS IR7: additional monitors in cells 9 \& 11
- arc region: cell 13 \& 19 left
- + Electron capture by pair production (J. Jowett, S Gilardoni): cells 11 \& 13 in IR1 and IR5, cells 10 \& 12 in IR 2

Some new locations for beam 2??

IR8 left

Injection optics, 450 GeV , Vertical Halo coll nominal 23/05/2006 Beam 2

- peaks in dipole without peak in following quad : danger?
- losses induced by scattering on the TDI : not relevant after injection

IR 6 left

- losses induced by the TCDQ?
- will be "seen" by monitors on the TCDQ?

IR3 left

Conclusions

- Positions for the arcs and dispersion suppressors: 6 monitors per quad (3 per beam)
- Positions in the IR to be finalized, based on same rules, but the integration has to be done element by element
- Some special requirements added. Some more?
- need loss maps with B-beating + orbit bumps + error scenarios for completeness of machine protection

