#### Locations of Beam Loss Monitors based on proton loss maps

Laurette Ponce (AB/BI)

Contents

- 1. Principle and assumptions of the simulation
- 2. Positioning of the monitors based on loss maps:
  - in the arcs
  - in the LSS
- 3. Special requirements

## 1. Principle of the simulation

- Loss maps given by R. Assmann team (C. Bracco, S. Redaelli, G. Robert-Demolaize)
- GEANT 3 simulation of the secondary shower created by a lost proton impacting the beam pipe
- scoring of the number of secondary particles entering the chamber
- then simulation of the detector response to the spectra registered in the left and right detector (M. Stockner with G4)

## **Geometry description**

- 500 protons same z position and same energy
- impacting angle is 0.25 mrad
- longitudinal scan performed to optimize the BLM location
- Transverse impact positions: outermost, innermost, top





19/06/06

# **Typical result**



19/06/06

#### Dependence on transverse position



outermost

#### Transverse distributions of losses



## Dependance on beam energy



- Position of the peak outside the cryostat independent on beam energy
- about 20 times less signal at injection inside the quad
- energy ratio depend on impacting point

## **Energy Deposition in Coil and Detector**



- Secondaries crossing the full volume of magnet coil
- preliminary results, only 10 protons
  - reached limitation of the code, need to migrate to G4.
- peak position in the coil in agreement with note 44 (40 cm from impact)

Number of secondaries

#### 2. Position in the ARCS

- Example of topology of Loss (MQ27.R7)
- Peak before MQ at the shrinking vacuum pipe location (aperture limit effect)
- End of loss at the centre of the MQ (beam size effect)



More simulation are needed to get better evidence (higher populated tertiary halo)

#### Particle Shower in the Cryostat



Position of the detectors optimized to:

- catch the losses:
- MB-MQ transition
- Middle of MQ
  - MQ-MB transition
  - minimize uncertainty of ratio of deposited energy in the coil and in the detector
- B1-B2 discrimination

#### for beam 2



- Same assumptions for beam 2 for loss locations
- Same positions for the detectors wrt the physical apertures

#### Position after integration



## "Integrated" signal seen by the BLMs



# MQ23L7 for beam 2



- Low cross-talk signal
- Good discrimination between B1 and B2

#### Positions in the LSS

- Loss pattern in DS look like in the arcs.
- So same rules for placement in conjunction with the integration possibilities : 1 m after the interconnection bellows, 50 cm after the magnetic centre



## Position in the IRs



Loss patterns has to be checked element by element

try to keep the same configuration as in the arcs

#### Positions at the triplets



#### another exemple



## The reality!



#### 3. Some special requirements

#### Additional monitors for MB.C13R7



## Position in the DS IR7



peak before the MQs and losses all along the magnets

## For ions:

Some special loss locations for the ions (G. Bellodi, H. Braun):



+ Electron capture by pair production (J. Jowett, S Gilardoni): cells 11 & 13 in IR1 and IR5, cells 10 & 12 in IR 2

#### Some new locations for beam 2??





Injection optics, 450 GeV, Vertical Halo coll nominal 23/06/2006 Beam 2

- peaks in dipole without peak in following quad : danger?
- Iosses induced by scattering on the TDI : not relevant after injection

Number of losses

#### IR 6 left



will be "seen" by monitors on the TCDQ?

#### IR3 left



#### Conclusions

- Positions for the arcs and dispersion suppressors: 6 monitors per quad (3 per beam)
- Positions in the IR to be finalized, based on same rules, but the integration has to be done element by element
- Some special requirements added. Some more?
- need loss maps with B-beating + orbit bumps + error scenarios for completeness of machine protection