BLM thresholds for Collimators

Mariusz Sapinski AB-BI, based on simulations of Andres Gomez Alonso

CERN, December $17^{\text {th }} 2008$

Procedure of BLM threshold settings on collimators

- Values of maximum allowed lost protons from Ralph
- Correction for fast failures scenarios from Andres
- Correction for low signal when a higher order halo particles deposit their energy (first approach)

drawing from Till
- Generation of signals in the BLMs from Till

Input from Collimation WG

Device	Location	Energy	T > 10s	1s $<\mathrm{T}<10 \mathrm{~s}$	T<1s
			$\mathrm{dN}_{>10} / \mathrm{dt}[\mathrm{p} / \mathrm{s}]$	$\mathrm{dN}_{1-10} / \mathrm{dt}[\mathrm{p} / \mathrm{s}]$	$\mathrm{N}_{<1}$ [p]
TCP	IR3	450 GeV	$1.20 \mathrm{E}+12$	$6.00 \mathrm{E}+12$	$6.00 \mathrm{E}+12$
TCP	IR3	7 TeV	$8.00 \mathrm{E}+10$	$4.00 \mathrm{E}+11$	$4.00 \mathrm{E}+11$
TCP	IR7	450 GeV	$1.20 \mathrm{E}+12$	$6.00 \mathrm{E}+12$	6.00E+12
TCP	IR7	7 TeV	$8.00 \mathrm{E}+10$	$4.00 \mathrm{E}+11$	4.00E+11
TCSG	IR3	450 GeV	$1.20 \mathrm{E}+11$	$6.00 \mathrm{E}+11$	$6.00 \mathrm{E}+11$
TCSG	IR3	7 TeV	8.00E+09	$4.00 \mathrm{E}+10$	$4.00 \mathrm{E}+10$
TCSG	IR7	450 GeV	$1.20 \mathrm{E}+11$	$6.00 \mathrm{E}+11$	$6.00 \mathrm{E}+11$
TCSG	IR7	7 TeV	8.00E+09	$4.00 \mathrm{E}+10$	$4.00 \mathrm{E}+10$
TCLA	IR3	450 GeV	$6.00 \mathrm{E}+08$	$3.00 \mathrm{E}+09$	$3.00 \mathrm{E}+09$
TCLA	IR3, IR7	7 TeV	$4.00 \mathrm{E}+07$	$2.00 \mathrm{E}+08$	$2.00 \mathrm{E}+08$
TCLA	IR7	450 GeV	$6.00 \mathrm{E}+08$	$3.00 \mathrm{E}+09$	$3.00 \mathrm{E}+09$
TCLA	IR3, IR7	7 TeV	$4.00 \mathrm{E}+07$	$2.00 \mathrm{E}+08$	$2.00 \mathrm{E}+08$
$\begin{aligned} & \text { TСТН, } \\ & \text { ТСТVA, } \\ & \text { TCTVB } \end{aligned}$	IR1, IR2, IR5, IR8	450 GeV	$6.00 \mathrm{E}+08$	$3.00 \mathrm{E}+09$	$3.00 E+009$
$\begin{aligned} & \text { TCTH, } \\ & \text { TCTVA, } \\ & \text { TCTVB } \end{aligned}$	IR1, IR2, IR5, IR8	7 TeV	$4.00 \mathrm{E}+07$	$2.00 \mathrm{E}+08$	$2.00 E+008$
$\begin{array}{\|l} \hline \text { TCL, } \\ \text { TCLP } \\ \hline \end{array}$	IR1, IR5	450 GeV	$6.00 \mathrm{E}+09$	$3.00 \mathrm{E}+10$	$3.00 E+010$
$\begin{aligned} & \hline \text { TCL, } \\ & \text { TCLP } \\ & \hline \end{aligned}$	IR1, IR5	7 TeV	$4.00 \mathrm{E}+08$	$2.00 \mathrm{E}+09$	$2.00 E+009$
$\begin{aligned} & \hline \text { TCLIA, } \\ & \text { TCLIB, } \\ & \text { TCSG } \end{aligned}$	IR2, IR6, IR8	450 GeV	$1.20 \mathrm{E}+11$	$6.00 \mathrm{E}+11$	$6.00 E+011$
$\begin{aligned} & \hline \text { TCLIA, } \\ & \text { TCLIB, } \\ & \text { TCSG } \\ & \hline \end{aligned}$	IR2, IR6, IR8	7 TeV	8.00E+09	$4.00 \mathrm{E}+10$	$4.00 E+010$

Remark:

- The numbers does not contain any safety factor for Collimator jaws for 7 TeV (some for 450 GeV)

Algorithm:

- For $\mathrm{t}<1 \mathrm{~s}$:

$$
\begin{aligned}
& \mathrm{N}_{\text {prot }}=1[\mathrm{~s}] \cdot \mathrm{dN}_{1-10} / \mathrm{dt} \\
& \mathrm{~N}_{\text {prot }}=\mathrm{t} \cdot \mathrm{dN}_{1-10} / \mathrm{dt}
\end{aligned}
$$

- For $1 \mathrm{~s}<\mathrm{t}<10 \mathrm{~s}$:
- For t>10s:

$$
\begin{aligned}
\mathrm{N}_{\text {prot }} & =10[\mathrm{~s}] \cdot \mathrm{dN}_{1-10} / \mathrm{dt} \\
& +(\mathrm{t}-10[\mathrm{~s}]) \cdot \mathrm{dN}_{>10} / \mathrm{dt}
\end{aligned}
$$

- Scaling with beam energy is linear

Fast failures

- Some failures lead to very fast loss rate increase
- The worst case scenario is quench of D1 (Andres)
- Threshold for TCP in IR7 at injection is $6 \cdot 10^{12}$ protons ie. $0.02 \cdot \mathrm{~N}_{\text {tot }}$

Integrated losses. Worst case at RD1.LR1, injection

Knowing that 4 turns are needed to dump the beam (RS01 and RS02) therefore the threshold should correspond to loss during $24^{\text {th }}$ turn.

Fast failures - correction

- The question is: what will be the number of lost protons 4 turns back:

New maximum numbers of lost protons:
$3 \cdot 10^{11}$

Threshold expressed in number of protons

Time for signal collection in electronics

- Results from LHC losses (single shots on magnets and collimator)
- Drawing is for IC, but the effects comes from cables so should be the same for SEM
- Correction for all running sums up to 10 ms (maybe 2.56 ms to be checked)
- This correction is about factor 2 for short running sums.

Correction for higher order halo

Some numbers:

In case of first TCP there is no factor 5 due to higher-order halo particles but there is almost factor 10 due to jaw angle!

- For transient loss at injection energy the threshold is about 70 times higher then quench-protecting threshold on the MB
- For RS01 it is $864 \mathrm{~Gy} / \mathrm{s}$

Conclusions

- The algorithm to determine initial setting of LHC collimator thresholds is established
- It includes the correction for losses with very high increase rate (like D1 magnet failure)
- Additional corrections due to long signal integration time in the electronics are made (factor 2-3)
- Initial correction for higher-order halo estimated more study required
- What about additional correction for peak energy for fast losses (factor 5)

