BLM thresholds for Collimators

Mariusz Sapinski AB-BI, based on simulations of Andres Gomez Alonso CERN, December 17th 2008

Procedure of BLM threshold settings on collimators

- Values of maximum allowed lost protons from Ralph
- Correction for fast failures scenarios from Andres
- Correction for low signal when a higher order halo particles deposit their energy (first approach)

Generation of signals in the BLMs from Till

Input from Collimation WG

Device	Location	Energy	T > 10s	1s < T < 10s	T < 1s
			dN _{>10} /dt [p/s]	dN ₁₋₁₀ /dt [p/s]	N _{<1} [p]
ТСР	IR3	450 GeV	1.20E+12		
ТСР	IR3	7 TeV	8.00E+10	4.00E+11	4.00E+11
ТСР	IR7	450 GeV	1.20E+12	6.00E+12	
ТСР	IR7	7 TeV	8.00E+10	4.00E+11	4.00E+11
TCSG	IR3	$450~{ m GeV}$	1.20E+11	6.00E+11	6.00E+11
TCSG	IR3	7 TeV	8.00E+09	4.00E+10	4.00E+10
TCSG	IR7	450 GeV	1.20E+11	6.00E+11	6.00E+11
TCSG	IR7	7 TeV	8.00E+09	4.00E+10	4.00E+10
TCLA	IR3	450 GeV	6.00E+08	3.00E+09	3.00E+09
TCLA	IR3, IR7	7 TeV	4.00E+07	2.00E+08	2.00E+08
TCLA	IR7	450 GeV	6.00E+08	3.00E+09	3.00E+09
TCLA	IR3, IR7	7 TeV	4.00E+07	2.00E+08	2.00E+08
TCTH, TCTVA, TCTVB	IR1, IR2, IR5, IR8	450 GeV	6.00E+08	3.00E+09	3.00E+009
TCTH, TCTVA, TCTVB	IR1, IR2, IR5, IR8	7 TeV	4.00E+07	2.00E+08	2.00E+008
TCL, TCLP	IR1, IR5	450 GeV	6.00E+09	3.00E+10	3.00E+010
TCL, TCLP	IR1, IR5	7 TeV	4.00E+08	2.00E+09	2.00E+009
TCLIA, TCLIB, TCSG	IR2, IR6, IR8	450 GeV	1.20E+11	6.00E+11	6.00E+011
TCLIA, TCLIB,	IR2, IR6, IR8	7 TeV	8.00E+09	4.00E+10	
TCSG					4.00E+010

Remark:

• The numbers does not contain any safety factor for Collimator jaws for 7 TeV (some for 450 GeV)

Algorithm:

- For t < 1 s : $N_{prot} = 1 [s] \cdot dN_{1-10}/dt$
- For 1 s < t < 10 s:
- For t > 10 s :

- $N_{\text{prot}} = t \cdot dN_{1-10}/dt$
- $N_{prot} = 10 [s] \cdot dN_{1-10}/dt$
 - + (t-10[s]) · $dN_{>10}/dt$
- Scaling with beam energy is linear

Fast failures

 N_{lost}/N_{tot}

- Some failures lead to very fast loss rate increase
- The worst case scenario is quench of D1 (Andres)
- Threshold for TCP in IR7 at injection is 6.10¹² protons ie. 0.02.N_{tot}

Integrated losses. Worst case at RD1.LR1, injection

Knowing that 4 turns are needed to dump the beam (RS01 and RS02) therefore the threshold should correspond to loss during 24th turn.

Fast failures - correction

• The question is: what will be the number of lost protons 4 turns back:

Threshold expressed in number of protons

Time for signal collection in electronics

- Results from LHC losses (single shots on magnets and collimator)
- Drawing is for IC, but the effects comes from cables so should be the same for SEM
- Correction for all running sums up to 10 ms (maybe 2.56 ms – to be checked)
- This correction is about factor 2 for short running sums.

Correction for higher order halo

Some numbers:

In case of first TCP there is no factor 5 due to higher-order halo particles but there is almost factor 10 due to jaw angle!

For transient loss at injection energy the threshold is about 70 times higher then quench-protecting threshold on the MB
For RS01 it is 864 Gy/s

Conclusions

- The algorithm to determine initial setting of LHC collimator thresholds is established
- It includes the correction for losses with very high increase rate (like D1 magnet failure)
- Additional corrections due to long signal integration time in the electronics are made (factor 2-3)
- Initial correction for higher-order halo estimated more study required
- What about additional correction for peak energy for fast losses (factor 5)