Simulations and Measurements of Secondary Electron Emission Beam Loss Monitors for LHC

<u>Daniel Kramer</u>, Eva Barbara Holzer, Bernd Dehning, Gianfranco Ferioli, Markus Stockner

CERN AB-BI

4.10.2006

Outline

- LHC BLM system
- BLMS design requirements
- Working principle of SEM
- Prototype design and vacuum issues
- Simulations in Geant4
- Measurements at 63 MeV
- Measurements at 1.4 GeV

LHC Beam Loss Monitoring system

- ~ 3700 <u>BLMI</u> chambers installed along LHC
- ~ 360 <u>BLMS</u> chambers required for high radiation areas:
 - Collimation
 - Injection points
 - Aperture limits
 - IPs
 - Beam Dump

BLMS design requirements

- Output limits given by electronics (Current to Frequency Converter)
 - > 2pA to 1mA for DC currents
- Worst case to measure: nominal SPS injection lost in a magnet 3 10¹³ p⁺ in 20us
 - > 1.5 10¹⁸ p⁺/s
- Sensitivity ~ 3 10⁴ times lower than ionization chambers (BLMI)
- Lifetime 20 years (very difficult or impossible to replace due to high radiation)
- Radiation hardness up to 70 MGy/year

Secondary Emission Monitor principle

- Secondary Electron Emission is a surface phenomenon
- Energy of SE (below ~ 50 eV) is independent on primary energy
- SE are pulled away by HV bias field (1.5kV)
- Current integrated between Signal and HV electrode (not between HV and Mass)
- Delta electrons do not contribute to signal due to symmetry

- VHV necessary to eliminate ionization inside the detector
- Very careful insulation and shielding of signal path to eliminate ionization in air
- No direct contact between Signal and Bias (guard ring)

4.10.2006

IPRD06, Siena

BLMS prototype assembly

- All components cleaned by standard UHV process
- Steel parts vacuum fired
- Fully penetrated TIG welds
- Pinch off after 300°C vacuum bake out at 10-9mbar
- No trapped gas volumes

- Production version will contain 170 cm² of NEG St707 to keep the vacuum < 10⁻⁴ mbar during 20 years
- All electrodes will be from Ti

Simulations in Geant4

Geometry of BLMS F type implemented including E fields

- Signal electrode covered by layer of TiO₂ (NIST predefined materials used)
- QGSP physics list used
- Readout done in UserSteppingAction by counting produced escaping electrons
- Photo-Absorption-Ionization module tested for production of low energy secondaries
 - Produces only energetic delta electrons > ~1keV (binary encounter)
 - => Not suitable for this study :o(

Semi empirical approach Sternglass formula

- Secondary Emission Yield is proportional to electronic dE/dx in surface layer
 - Material parameter Λ calculated from effective penetration distance of SE
- SEY of each particle crossing TiO₂/vacuum boundary calculated and SE 'generated' with this probability
- Low energy correction not used (to match literature values)

$$\gamma_{b} = \Lambda \frac{dE}{dx_{el}} \left(1 + \frac{1}{1 + \frac{E_{p}}{0.1836 A_{p}}} \right)$$

Secondary Emission Yield by Modified Sternglass formula for p⁺

Comparison with published data

 Al2O3 data from C.M.Castaneda 1997

Thin foil measurements

 TiO2 (Ti) data from G. Ferioli 1996

SPS transfer
line SEM
calibration

4.10.2006

Prototype tests with 63MeV cyclotron beam in Paul Scherer Institute

- Current measured with electrometer Keithley 6517A
- HV power supply FUG HLC14
- Pattern not yet fully understood
 - Simulation of delta electron contribution to be made with different HV
- SEM usable from U > 2V!
- Comparison with BLMI
 - ~ 1nA with BLMS
 - ~ 3 uA with BLMI
- Geant4 simulation SEY = 28.2%

PSI proton beam 62.9MeV 30JUN06 BLMS prototypes F & C Type HV dependence of SEY

4.10.2006

IPRD06, Siena

Measurements in PS Booster Dump line

- Older prototype used -Type C
- Profiles integrated with digital oscilloscope
 - 1.5kV bias voltage
 - 80m cable length
 - Single bunch passage
- SEY measurements
 - 4.9% (May 06)
 - 5.4% (June 06)
- Geant4 simulation
 - SEY = 4.4%

PSB Dump 16.6.06 1.4 GeV Linearity and Normalized response

Measurements in PS Booster Dump line

Time response with ~10¹⁹ protons/s 160ns bunch length

- BLMS & ACEM in PSB dump 15 June 2006 1 bunch of 1.3 GeV 184*10¹⁰p+ 180 4.5 160 4 140 3.5 120 3 Current ACEM [mA] Current SEM [mA] 100 2.5 80 2 60 1.5 40 20 0.5 O they they was 0 -20 -0.5 -0.4 -0.2 0.2 0.4 0.6 0.8 1.2 0 1 1.4 16 time [µs]
- BLMS compared to reference radiation monitor ACEM (Aluminum Cathode Electron Multiplier tube)
- ACEM not directly in the beam
- Rise/fall time < 50 ns</p>
 - Dominated by unknown intensity distribution
- No undershoot or tail observed

Future or ongoing experiments

- BLMS and BLMI installed on SPS internal Dump – comparison in high flux mixed radiation field
- Scan through beam at 400 GeV in SPS transfer line
- Calibration in PSI by 250 MeV continuous proton beam
- High sensitivity outgassing test

Conclusions

- Prototype designs of BLMS were successfully tested with proton beams
- No saturation at maximum required flux
- Geant4 simulation approach gives satisfactory results
 - Results to be validated by measurements at different energies
 - Next step: prediction of SEM signal at the LHC Collimators in mixed radiation field
- Vacuum stability still to be verified

Reserve plotsPSB 1.4GeV4 May 06

4.10.2006

IPRD06, Siena

Reserve plot

PSB 1.4GeV

4 May 06

IPRD06, Siena