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LHC ChallengesLHC Challenges
1. 7 TeV protons (10 

times higher than 
existing 
accelerators). 

2. 724 MJ of energy in 
the two beams (200 
times higher).

3. 10 GJ of energy in 
the electric circuits.

4. Superconductive 
magnets: 502 main 
quadrupoles, 1232 
main  dipoles.
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LHC Protection SystemLHC Protection System

In the frame of the Reliability Sub-Working Group, the LHC
systems have been globally investigated from the dependability 
point of view.

In the frame of the Reliability Sub-Working Group, the LHC
systems have been globally investigated from the dependability 
point of view.
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BLMS AimsBLMS Aims

1. Measure the lost protons.

2. Compare the shower signal with thresholds.

3. Trigger the extraction of the beam to stop the beam losses.

1. Measure the lost protons.

2. Compare the shower signal with thresholds.

3. Trigger the extraction of the beam to stop the beam losses.

The BLMS must be :

1. SAFE: in case of  dangerous loss, it has to inhibit the beam 
permit. If it fails, there will be ~30 days of downtime.

2. FUNCTIONAL: in case of NO dangerous loss, it has NOT to 
inhibit the beam. If it fails, it generates a  false alarm and 3 h 
will be lost to recover the previous situation. Such an event 
will decrease the LHC efficiency.

The BLMS must be :

1. SAFE: in case of  dangerous loss, it has to inhibit the beam 
permit. If it fails, there will be ~30 days of downtime.

2. FUNCTIONAL: in case of NO dangerous loss, it has NOT to 
inhibit the beam. If it fails, it generates a  false alarm and 3 h 
will be lost to recover the previous situation. Such an event 
will decrease the LHC efficiency.

Protection against damages caused by beam losses.Protection against damages caused by beam losses.
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System LayoutSystem Layout
1. Detector Locations.

2. Secondary Particles Heating.

3. Front End Electronics.

4. Back End Electronics.

5. Combiner.

6. VME Crate and Rack.

7. Power Supplies.
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Detector LocationDetector Location
Simulation of the loss 
locations along the LHC
ring.

Concentration of losses 
at the quadrupole 
regions.

Simulation of the loss 
locations along the LHC
ring.

Concentration of losses 
at the quadrupole 
regions.

QuadrupoleMO

Beam
direction
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Conservative hypothesis: 
the simultaneous 
presence of high losses 
in different locations is 
neglected. Every 
dangerous loss could be 
seen just by one 
detector.
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Secondary Particles HeatingSecondary Particles Heating
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boiling effect, …). 

Big uncertainty. Further 
studies motivated.
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Front End Electronics (FEE)Front End Electronics (FEE)
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DetectorDetector

• Detection of the particles’ shower. 

• Current signal proportional to the 
particles’ loss.

• Ionization chambers placed 
around the quadrupole region.
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Channel 8

Front End Electronics (FEE)

• Transformation

Front End ElectronicsFront End Electronics
of the current signal 

in a digital data. 

• Multiplexing of 8 channels with 
redundant optical transmission.

• Electronics in an harsh 
environment (radiations).
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Back End ElectronicsBack End Electronics
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• Optical receivers in a 
mezzanine board.

• Data treatment in a Digital 
Acquisition Board. Energy 
input for the selection of the 
threshold levels.

• Beam permits connected to 
the backplane.
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CombinerCombiner
• Reception of  the 

beam permits and 
forwarding them to 
the LHC Beam 
Interlock System.

• Reception and 
distribution of the 
energy signal to 
the BEE cards.

• Surveillance: 
several testing 
process for the 
BLMS.
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VME Crate and RackVME Crate and Rack
• Up to 16 BEE cards and a Combiner card are located 

in a VME crate.

• The beam permit lines of the BEE cards  in a crate 
are daisy chained up to the Combiner card.  

• Up to 16 BEE cards and a Combiner card are located 
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are daisy chained up to the Combiner card.  

• The energy signal is provided in parallel to each 
combiner card.
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• 25 VME Crates in 8 racks. In each rack there will be 
a LHC Beam Interlock System user interface.
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Power SuppliesPower Supplies

• 1926 power supplies in the tunnel.

• 25 VME power supplies at the surfaces.

• 16 High Tension (HT) power supplies at the 
surface for the detectors.
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Definitions 1Definitions 1
Reliability: probability of an element to operate under designated 
operating conditions up to a designated period of time. 
Usually indicated by R(t), where t is an interval!

Reliability: probability of an element to operate under designated 
operating conditions up to a designated period of time. 
Usually indicated by R(t), where t is an interval!

Maintainability: probability that a given active maintenance 
action, for an item under given conditions of use, can be carried 
out within a stated time interval when the maintenance is 
performed under stated conditions and using stated procedures 
and resources.
Usually indicated by G(t), where t is an interval!

Maintainability: probability that a given active maintenance 
action, for an item under given conditions of use, can be carried 
out within a stated time interval when the maintenance is 
performed under stated conditions and using stated procedures 
and resources.
Usually indicated by G(t), where t is an interval!

Availability: is the probability of an element to operate under 
designated operating conditions at a designated time or cycle. 
Usually indicated by A(t), where t is an instant!

Availability: is the probability of an element to operate under 
designated operating conditions at a designated time or cycle. 
Usually indicated by A(t), where t is an instant!
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Definitions 1: exampleDefinitions 1: example
Function: run with two legs.Function: run with two legs.

yesyes

nono
00 t1t1 t3t3t2t2

ReliableReliable
AvailableAvailable

UnreliableUnreliable
UnavailableUnavailable

‘‘Reliable’’‘‘Reliable’’
AvailableAvailable

(1) Failure: 
broken leg.
(1) Failure: 
broken leg.(1)(1) (2)(2)

(2) Reparation: 
recovered leg.
(2) Reparation: 
recovered leg.

Notes
• If there is no reparation, reliability = availability.
• Person not reliable in the period 0 - t3 but reliable between t2 - t3. 

Notes
• If there is no reparation, reliability = availability.
• Person not reliable in the period 0 - t3 but reliable between t2 - t3. 

This is one case. To define the reliability, the maintainability and 
the availability several cases are needed.
This is one case. To define the reliability, the maintainability and 
the availability several cases are needed.
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Definitions 2Definitions 2

Safety: the likelihood of an element to maintain throughout its life 
cycle an acceptable level of risk that may cause a major damage 
to the product or its environment.
Definition very  vague!

Safety: the likelihood of an element to maintain throughout its life 
cycle an acceptable level of risk that may cause a major damage 
to the product or its environment.
Definition very  vague!
Dependability: ensemble of reliability, availability, maintainability 
and safety.
Also called RAMS (Reliability, Availability, Mainteinabillity, 
Safety). It is a purist term. Reliability is the term improperly used 
to indicate “dependability”.

Dependability: ensemble of reliability, availability, maintainability 
and safety.
Also called RAMS (Reliability, Availability, Mainteinabillity, 
Safety). It is a purist term. Reliability is the term improperly used 
to indicate “dependability”.

Risk: Product of the probability to have a damage times the 
« cost » of the damage. 
The availability analysis gives the damage probability, the risk
analysis gives the cost of the damage.

Risk: Product of the probability to have a damage times the 
« cost » of the damage. 
The availability analysis gives the damage probability, the risk
analysis gives the cost of the damage.
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DependabilityDependability

SafetySafety

ReliabilityReliability MaintainabilityMaintainability

AvailabilityAvailability

RiskRisk

DependabilityDependability

ConsequencesConsequences
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Mathematics: reliabilityMathematics: reliability
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Reliability R(t) and Unreliability F(t) are probabilities.Reliability R(t) and Unreliability F(t) are probabilities.

The element works at the beginning and it will fail.The element works at the beginning and it will fail.

Failure density f(t): f(t)dt is the probability that an element 
fails in the period between t and t+dt given that the 
component was working at time zero.

Failure density f(t): f(t)dt is the probability that an element 
fails in the period between t and t+dt given that the 
component was working at time zero.
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Hazard rate r(t): r(t)dt is the probability that an element fails in 
the period between t and t+dt given that it survived up to time 
t and it was working at time zero.

Hazard rate r(t): r(t)dt is the probability that an element fails in 
the period between t and t+dt given that it survived up to time 
t and it was working at time zero.
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Mathematics: maintainabilityMathematics: maintainability
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Maintainability G(t) is a probability.
“Unmaintainability” does not exist.
Maintainability G(t) is a probability.
“Unmaintainability” does not exist.

The element does not work at time 0 and it will be repaired in 
the indefinite future.
The element does not work at time 0 and it will be repaired in 
the indefinite future.

Repair density g(t): g(t)dt is the probability that a element 
repair is completed in the period between t and t+dt given that 
the component was failed at time zero. 

Repair density g(t): g(t)dt is the probability that a element 
repair is completed in the period between t and t+dt given that 
the component was failed at time zero. 
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Repair rate m(t): m(t)dt is the probability that an element is 
repaired in the period between t and t+dt given that it has 
failed up to time t and it was failed at time zero.

Repair rate m(t): m(t)dt is the probability that an element is 
repaired in the period between t and t+dt given that it has 
failed up to time t and it was failed at time zero.
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Mathematics: availabilityMathematics: availability
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Availability A(t) and Unavailability Q(t) are probabilities. 
The element works at time 0 and it has, in the long 
period,  a steady probability to work.
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time at time t, given that it was as good as new at time 
zero.
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expected number of failures and the expected number 
of reparations in the interval 0-t.
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expected number of failures and the expected number 
of reparations in the interval 0-t.
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λ Conditional failure [repair] intensity l(t) [m(t)]: defined as 
the probability that a component fails [is repaired] per 
unit time at time t, given that it was as good as new at 
time zero and it is working [is failed] at time t.

Conditional failure [repair] intensity l(t) [m(t)]: defined as 
the probability that a component fails [is repaired] per 
unit time at time t, given that it was as good as new at 
time zero and it is working [is failed] at time t.
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Mathematics: summaryMathematics: summary
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DependabilityDependability

SafetySafety

ReliabilityReliability MaintainabilityMaintainability

AvailabilityAvailability

RiskRisk
a) ~30 days of downtime for 

a magnet substitutions.
b) ~3 hours of downtime to 
recover from a false alarm.

a) ~30 days of downtime for 
a magnet substitutions.

b) ~3 hours of downtime to 
recover from a false alarm.

DependabilityDependability
a) Probability to loose a 

magnet: < 0.1/y.
b) Number of false alarms 

per year: < 20/y.

a) Probability to loose a 
magnet: < 0.1/y.

b) Number of false alarms 
per year: < 20/y.

ConsequencesConsequences

Hazard rates (λ)?
Failure modes ?

Hazard rates (λ)?
Failure modes ?

Repair rates (μ)?
Inspection  periods (τ)?

Repair rates (μ)?
Inspection  periods (τ)?
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BLMS DependabilityBLMS Dependability

General Features:
•Hazard rates of the components:

“How often does a component fail?”
•Failure modes of the components:

“How does a component fail?”
•Fail safe design.

The most probable failure of the component does not 
generate the worst consequence (= risk to damage a 
magnet).

General Features:
•Hazard rates of the components:

“How often does a component fail?”
•Failure modes of the components:

“How does a component fail?”
•Fail safe design.

The most probable failure of the component does not 
generate the worst consequence (= risk to damage a 
magnet).
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FEE DependabilityFEE Dependability
•Irradiation tests on the 

analogue components and 
LASERs to investigate hazard 
rate variation. Induced error 
negligible.

•Definition of the 10pA test and 
of the HT test to check the 
channel functionalities.

•Doubling of the optical lines
and two-out-of-three (2oo3) 
redundancy in the FPGA.

•Irradiation tests on the 
analogue components and 
LASERs to investigate hazard 
rate variation. Induced error 
negligible.

•Definition of the 10pA test and 
of the HT test to check the 
channel functionalities.

•Doubling of the optical lines
and two-out-of-three (2oo3) 
redundancy in the FPGA. Transmission
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BEE DependabilityBEE Dependability
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•Definition of the
tests to check the 
integrity of the 
data.

•Definition of the 
thresholds 
windows to 
minimize the 
evaluation error.

•Definition of the
tests to check the 
integrity of the 
data.

•Definition of the 
thresholds 
windows to 
minimize the 
evaluation error.
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Combiner DependabilityCombiner Dependability
•Definition of 

the tests to 
check the 
whole signal 
chain.

•Definition of 
the 
criticalities of 
the energy 
signal.
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chain.
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the 
criticalities of 
the energy 
signal.
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Power Supplies DependabilityPower Supplies Dependability
•2oo3 redundancy of the VME power 

supplies. 

•Redundant High Tension power 
supplies.
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OutlineOutline

• Dependable Design.• Dependable Design.

• Introduction.• Introduction.
• System Layout.• System Layout.
• Dependability.• Dependability.

• Dependability Analysis.• Dependability Analysis.
• Conclusions.• Conclusions.
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BLMS PredictionsBLMS Predictions

Rates collected mainly from the suppliers, then from historical 
data, and finally from the MIL-HDBK 217F. 
Rates collected mainly from the suppliers, then from historical 
data, and finally from the MIL-HDBK 217F. 

True rate.
Constant.

r(t)

tLifetime

Early
failures Random

failures

Wearout
failuresHazard rates λ are assumed to be 

constant. After a short initial period, 
this assumption overestimates the 
failure rates.

Hazard rates λ are assumed to be 
constant. After a short initial period, 
this assumption overestimates the 
failure rates.

The Prediction is the estimation of the hazard rate of the 
components.
The Prediction is the estimation of the hazard rate of the 
components.
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Predictions UncertaintiesPredictions Uncertainties

The Dependability Analysis will be performed on the central 
values. 
The effect of the λ uncertainties on the dependability results will 
be estimated by the Sensitivity Analysis.

The Dependability Analysis will be performed on the central 
values. 
The effect of the λ uncertainties on the dependability results will 
be estimated by the Sensitivity Analysis.

SupplierSupplier
λ of the power 
supply in the arc:
2·10-9/h.

λ of the power 
supply in the arc:
2·10-9/h.

λ of similar power 
supply in the tunnel:
2·10-6/h.

λ of similar power 
supply in the tunnel:
2·10-6/h.

Uncertainty is given by 
the unknown supplier 
test procedures.

Uncertainty is given by 
the unknown supplier 
test procedures.

HistoricalHistorical
216 detectors had no 
failure over 20 years 
(of 4800 hours).

216 detectors had no 
failure over 20 years 
(of 4800 hours).

Assumption: λ is constant.
λ < 4·10-8/h (60% of CL) 
1·10-8/h < λ < 8·10-8/h (95%) 

Assumption: λ is constant.
λ < 4·10-8/h (60% of CL) 
1·10-8/h < λ < 8·10-8/h (95%) 

Uncertainty is 
given by the 
lack of failures.

Uncertainty is 
given by the 
lack of failures.

Military 
handbook
Military 
handbook

λ has been evaluated 
by tests of electronics  
20 years ago.

λ has been evaluated 
by tests of electronics  
20 years ago.

New electronics 
evaluation (IEC 
standard) lower λ.

New electronics 
evaluation (IEC 
standard) lower λ.

MIL to be comparable 
with other LHC studies 
and to be conservative.

MIL to be comparable 
with other LHC studies 
and to be conservative.



G. Guaglio 37/46April 6th 2005
Introduction System Layout Dependability Dependable Design Dependability Analysis Conclusions

BLMS FMECABLMS FMECA
The Failure Modes, Effects and Criticalities Analysis enumerates the failure modes of 
the components and studies the propagation of the failure effects to the system level.
The Failure Modes, Effects and Criticalities Analysis enumerates the failure modes of 
the components and studies the propagation of the failure effects to the system level.

Three Ends Effects:
1. Damage Risk: probability not to be ready in case of 

dangerous loss. 
2. False Alarm: probability to generate a false alarm.
3. Warning: probability to generate a maintenance request 

following a failure of a redundant component.

Three Ends Effects:
1. Damage Risk: probability not to be ready in case of 

dangerous loss. 
2. False Alarm: probability to generate a false alarm.
3. Warning: probability to generate a maintenance request 

following a failure of a redundant component.

Almost 160 Failure Modes have been defined for the BLMS using the FMD-97 
standard.
Conservative hypothesis: bench tests do not eliminate the construction failure modes.

Almost 160 Failure Modes have been defined for the BLMS using the FMD-97 
standard.
Conservative hypothesis: bench tests do not eliminate the construction failure modes.

i
FM
i

FM
i λαλ ⋅=

Component’s Hazard rate
from prediction
Component’s Hazard rate
from prediction

Apportionment from FMECAApportionment from FMECA
Failure Mode’s hazard 
rate of the component
Failure Mode’s hazard 
rate of the component
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BLMS Testing ProcessesBLMS Testing Processes

The failure probability decrease with the decrease of the 
inspection period.
The failure probability decrease with the decrease of the 
inspection period.

Gain testGain test
Bench testsBench tests

Barcode checkBarcode check

High Tension testsHigh Tension tests

Double Optical Line ComparisonDouble Optical Line Comparison

10pA test10pA test

Thresholds and Channel 
Assignment checks
Thresholds and Channel 
Assignment checks

Beam Inhibition Lines testsBeam Inhibition Lines tests

Detector FEE BEE Combiner

Inspection phases:     Check-in,     Maintenance,     Before every fill,      With the beamInspection phases:     Check-in,     Maintenance,     Before every fill,      With the beam
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OR Gate

EVENT1 EVENT2

OR Gate

EVENT1 EVENT2

AND Gate

EVENT1 EVENT2

AND Gate

EVENT1 EVENT2

Fault Tree AnalysisFault Tree Analysis
The probability to have an Failure Mode A, Pr{A}, is calculated per each Failure Modes 
of the FMECA, given the hazard rate, the repair rate and the inspection period .
The probability to have an Failure Mode A, Pr{A}, is calculated per each Failure Modes 
of the FMECA, given the hazard rate, the repair rate and the inspection period .

1. Two events, A & B, are statistically 
independent if and only if:
Pr{AB} = Pr{A} × Pr{B}

1. Two events, A & B, are statistically 
independent if and only if:
Pr{AB} = Pr{A} × Pr{B}

2. The probability that at least one of two 
events A and B occurs is:
Pr{A + B} = Pr{A} + Pr{B} – Pr{AB}

2. The probability that at least one of two 
events A and B occurs is:
Pr{A + B} = Pr{A} + Pr{B} – Pr{AB}

The Fault Tree Analysis is based on the combinatorial statistics. Some Basic Gates 
(= combination laws) are:
The Fault Tree Analysis is based on the combinatorial statistics. Some Basic Gates 
(= combination laws) are:
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Several other combination are available: XOR, Voting, NOT,…Several other combination are available: XOR, Voting, NOT,…
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Fault Trees ResultsFault Trees Results
The probabilities to fail (unavailability) for the BLMS have been 
calculated.
Per each End Effects, the major contributors to such probabilities 
have been pointed out too.

The probabilities to fail (unavailability) for the BLMS have been 
calculated.
Per each End Effects, the major contributors to such probabilities 
have been pointed out too.

Consequences
per year

Weakest components Notes

Damage
Risk

5·10-4

(100 dangerous
losses)

Detector (88%)
Analogue electronics (11%)

Detector l likely overestimated 
(60% CL of no failure after
1.5 106 h).

False
Alarm

13 ± 4
Tunnel power supplies (57%)
VME fans (28%)

Hazard rate of the tunnel power 
supplies likely underestimated 
(see sensitivity example).

Warning 35 ± 6
Optical line (98%)
VME PS (  1%)

LASER hazard rate likely 
overestimated by MIL.
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Sensitivity AnalysisSensitivity Analysis
The Sensitivity Analysis provides the impact of the variation of 
either a parameter or a system configuration on the 
unavailabilities of the system.

The Sensitivity Analysis provides the impact of the variation of 
either a parameter or a system configuration on the 
unavailabilities of the system.
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Example 1: Effect of  the variation of the λ of the Power Supplies in the arc (PSarc).
λ PS in the arc 2·10-9/h. If similar to the PS in the straight section (2·10-6/h),

Δλ = ~2·10-6/h.
Δλ multiplied by the sensitivity factor (1.3·104 h) reads:

ΔQ = 2.5 10-2 ( from Q= 3.4 10-2).
For the 400 missions,  10 extra False Alarms per year: number of False Alarms 
would be 23 ± 5.

Example 1: Effect of  the variation of the λ of the Power Supplies in the arc (PSarc).
λ PS in the arc 2·10-9/h. If similar to the PS in the straight section (2·10-6/h),

Δλ = ~2·10-6/h.
Δλ multiplied by the sensitivity factor (1.3·104 h) reads:

ΔQ = 2.5 10-2 ( from Q= 3.4 10-2).
For the 400 missions,  10 extra False Alarms per year: number of False Alarms 
would be 23 ± 5.
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Sensitivity: ConsiderationsSensitivity: Considerations
Redefinition of the hazard rates after one year of LHC operation.Redefinition of the hazard rates after one year of LHC operation.

The Sensitivity Analysis allows an estimation of the variation of 
the system dependability given by the re-evaluations of the 
component parameters. 

The Sensitivity Analysis allows an estimation of the variation of 
the system dependability given by the re-evaluations of the 
component parameters. 

Estimated λ for 
comparator:
2·10-7/h

Estimated λ for 
comparator:
2·10-7/h

For 1932 comparators,
after one LHC year:
1932 x 4800h = 9·106

equivalent working hours.

For 1932 comparators,
after one LHC year:
1932 x 4800h = 9·106

equivalent working hours. 2·10-7/h2·10-7/h11
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Number
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OutlineOutline

• Dependable Design.• Dependable Design.

• Introduction.• Introduction.
• System Layout.• System Layout.
• Dependability.• Dependability.

• Dependability Analysis.• Dependability Analysis.
• Conclusions.• Conclusions.
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ConclusionsConclusions
The average probability that in an year a channel will miss a dangerous loss is 5·10-4

(less than the tolerated 0.1), assuming 100 dangerous losses per year.

The maximum number of expected false alarms is 
13 ± 4 per year (less than the tolerated 20).

The expected maintenance actions (false alarms plus warnings) are 49 ± 7 per year, ~ 
1 every 4 days.

The average probability that in an year a channel will miss a dangerous loss is 5·10-4

(less than the tolerated 0.1), assuming 100 dangerous losses per year.

The maximum number of expected false alarms is 
13 ± 4 per year (less than the tolerated 20).

The expected maintenance actions (false alarms plus warnings) are 49 ± 7 per year, ~ 
1 every 4 days.

Due to the conservative hypothesis, all the figures are expected
to be overestimated.
Due to the conservative hypothesis, all the figures are expected
to be overestimated.

Estimation of the actual hazard rates and possible corrective 
actions during the first years of commissioning are significant.
Estimation of the actual hazard rates and possible corrective 
actions during the first years of commissioning are significant.
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Questions?Questions?

Thank you for the attention.Thank you for the attention.
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