

Reliability of Beam Loss Monitors System for the Large Hadron Collider

ICFA Oct 2004

Reliability of BLMS for the LHC. G.Guaglio, B Dehning, C. Santoni

Reliability of BLMS for the LHC. G.Guaglio, B Dehning, C. Santoni

System fault events

Prevent superconductive magnet destruction (MaDe) due to an high loss (~30 downtime days for substitution).

Avoid false dumps (FaDu) (~3 downtime hours to recover previous beam status).

ICFA Oct 2004

Reliability of BLMS for the LHC. G.Guaglio, B Dehning, C. Santoni

Frequency

Systems BLMS Software Results

SIL ↑

<u>LHC</u>

TABLE 1). Frequency table	used for LHC risk definition.			
Category	Description	Indicative frequency level (per year)		
Frequent	Events which are very likely to occur	> 1		
Probable	Events that are likely to occur	10 ⁻¹ - 1		
Occasional	Events which are possible and expected to occur	10 ⁻² – 10 ⁻¹		
Remote	Events which are possible but not expected to occur	10 ⁻³ – 10 ⁻²		
Improbable	Events which are unlikely to occur	10 ⁻⁴ – 10 ⁻³		
Negligible / Not credible	Events which are extremely unlikely to occur	< 10 ⁻⁴		
ICFA Oct 2004	Reliability of BLMS for the LHC. G.Guaglio, B Dehning, C. Santoni	5/16		

LHC SIL

Gravity

Systems BLMS

Software Results

TABLE 1). Gravity table used for LHC risk definition.								
Category	Injury to pe	Damage to equipment						
	Criteria	N. fatalities (indicative)	CHF Loss	Downtime				
Catastrophic	Events capable of resulting in multiple fatalities	≥1	> 5*10 ⁷	> 6 months				
Major	Events capable of resulting in a fatality	0.1 (or 1 over 10 accidents)	10 ⁶ – 5*10 ⁷	20 days to 6 months				
Severe	Events which may lead to serious, but not fatal, injury	0.01 (or 1 over 100 accidents)	10 ⁵ – 10 ⁶	3 to 20 days				
Minor	Events which may lead to minor injuries	0.001 (or 1 over 1000 accidents)	0 – 10 ⁵	< 3 days				

ICFA Oct 2004

Reliability of BLMS for the LHC. G.Guaglio, B Dehning, C. Santoni

SIL levels and failure rates

Event Likelihood	Consequence					
	Catas-trophic	Major	Severe	Minor		
Frequent	SIL 4	SIL 3	SIL 3	SIL 2		
Probable	SIL 3	SIL 3	SIL 3	SIL 2		
Occasional	SIL 3	SIL 3	SIL 2	SIL 1		
Remote	SIL 3	SIL 2	SIL 2	SIL 1		
Improbable	SIL 3	SIL 2	SIL 1	SIL 1		
Negligible / Not Credible	SIL 2	SIL 1	SIL 1	SIL 1		

	SIL	Probability of a dangerous failure per hour
	4	10 ⁻⁹ < Pr < 10 ⁻⁸
For high demand /	3	10 ⁻⁸ < Pr < 10 ⁻⁷
mode of	2	10 ⁻⁷ < Pr < 10 ⁻⁶
operation systems	1	10 ⁻⁶ < Pr < 10 ⁻⁵

ICFA Oct 2004

Reliability of BLMS for the LHC. G.Guaglio, B Dehning, C. Santoni

Fail Safe Design

The design is conceived to generate a normal status variation following a fail.

Availability Improvements

Test (continuously, 20 hours and yearly) of detector and analog electronic, to face integral dose degradation; voting for digital part, to avoid single event effects.

Reliability Improvements

Actions against the weakest elements : redundancy (lasers, CRC, decisions table,...).

ICFA Oct 2004

Reliability of BLMS for the LHC. G.Guaglio, B Dehning, C. Santoni

Failure Rates

Systems

BLMS

1

Software Results

	Ee	ailure rate à [10-81	Notes			
Component	1 C		Inspection	Canaral		
	Single	Not redundant Redundant		interval [h]	General	
IC+cable+terminations	2.5			20	Experience SPS	
Integrator	2.0	24			Dose fluence	
Switch	8.7			0		
FPGA TX*	200			òonti	e and e tested	
Laser	510			nuo		
2 Optical connectors	20			us (
Optical fibre	20	840	0.014	40 µ		
Photodiode	3.2			(S1		
FPGA RX*	70					

Reference:MIL-HDBK-217F

LHC

SIL

IC calculated with 60% confidence level of no fails over 140 IC in 30 years in SPS

Reliability of BLMS for the LHC. G.Guaglio, B Dehning, C. Santoni

Software Results **FMECA** analysis

Systems BLMS

Block : BLMS			Block : 1.2							
Entry ID	Failure Mode	Contrib	utors		Function: Detect loss ID: IC+cable					
1	Unsafe	1.3 no	IC signa	, 1.4 wrong IC signal	Entry	Failure Mode	Effects	End Effects	Detection Method	
Block : 1 ID: tunne Level: 1	Block : 1 ID: tunnel installation Level: 1			1.2.1	Signal Cable Shorts (Poor	No IC signal	Unsafe	HV		
Entry ID	Failure Mode	Failure ModeContributors		Sealing			1			
1.2	wrong HT 1.1.3 Degradation of Insulation		1.2.5	CIC Shorted (Electrical)	No HT	False dump	Surface HT			
			Contac	ct Resistance, 1.1.5 Mi Failure		 		1	status	
1.3	no IC s	signal	1.2.1 Signal Cable Shorts Mechanical Failure of C		1.2.11	IC gas pressure	wrong signal	Unsafe mission	Radiation Source	
1.4	wron sigr	g IC nal	1.2.3 De C	egradation of Cable Ins Cable Miscellaneous Me	change echanical Failures,		from IC mission	more		
		1	11.196/52/199	1.2.11 IC gas pres	ssure change		1			
	ICFA Oc	t 2004		Reliability of G.Guaglio, B	BLMS for t	the LHC. C. Santoni		13/16	3	

1954-200

LHC

SIL

ICFA Oct 2004

Reliability of BLMS for the LHC. G.Guaglio, B Dehning, C. Santoni

- 1. Probable multi-detection per loss (further simulations on going): MaDe OK.
- 2. FaDu improving with better electronic components (and better power distribution).
- 3. The systematic reliability approach guide the BLMS design (redundancies, testing, sensitivity evaluations).

Reliability of BLMS for the LHC. G.Guaglio, B Dehning, C. Santoni