

The use of MonteCarlo radiation transport codes in radiation physics and dosimetry: part II, modeling of nuclear reactions

> <u>Alfredo Ferrari</u> CERN, Geneva Switzerland

> > CERN, 28 June 2006

Disclaimer:

A significant fraction of the examples presented in this lecture is based on the work of many colleagues: in particular F.Ballarini, G.Battistoni, M.Brugger, F.Cerutti, R.Engel, A.Fassò, M.V.Garzelli, K.Parodi, M.Pelliccioni, J.Ranft, S.Roesler, P.R.Sala, F.Sommerer, V.Vlachoudis, and many others, mostly but not only from the FLUKA collaboration

Most of the examples presented have been obtained with the FLUKA code, the speaker is one of the authors of, which is the tool used at CERN for most radioprotection/dosimetry calculations They are representative of state-of-the-art nuclear models and should give a reasonable insight into the underlying physics concepts

Outline

Introduction

- Hadronic physics vs MonteCarlo
- Nuclear interaction vs dosimetry and radiation protection
- Nuclear interactions in brief
 - Hadron-Nucleon & Hadron-Nucleus
 - Nucleus-Nucleus
 - Real and Virtual Photonuclear interactions
- Examples of applications
 - Activity and residual dose rate predictions
 - Cosmic rays, commercial flights and missions to MARS
 - Hadrotherapy applications

HEP Hadronic MC applications:

MC simulations are a well established tool in HEP for:

- Particle physics: calorimetry, tracking and detector simulation
- Accelerator design (\rightarrow LHC systems)
- Radiation protection (shielding, activation, ...)
- Dosimetry
- Cosmic ray physics

They are also used for:

> Neutronics simulations

> ADS (Accelerator Driven Systems)

Applications to Medicine/radiobiology are growing, thanks to

- Mixed field capability, including ion transport and interactions
- Accuracy
- Reliability

Inelastic hN interactions

Intermediate Energies

- $N_1 + N_2 \rightarrow N_1' + N_2' + \pi$ threshold around 290 MeV
 - important above 700 MeV
- $\pi + N \rightarrow \pi' + \pi'' + N'$ opens at 170 MeV
- Dominance of the $\Delta(1232)$ resonance and of the N* resonances \rightarrow reactions treated in the framework of the isobar model \rightarrow all reactions proceed through an intermediate state containing at least one resonance
- Resonance energies, widths, cross sections, branching ratios from data and conservation laws, whenever possible

High Energies: Dual Parton Model/Quark Gluon String Model etc

- Interacting strings (quarks held together by the gluon-gluon interaction into the form of a string)
- Interactions treated in the Reggeon-Pomeron framework
- each of the two hadrons splits into 2 colored partons \rightarrow combination into 2 colourless chains \rightarrow 2 back-to-back jets
- each jet is then hadronized into physical hadrons

Total and elastic cross section for p-p and p-n scattering, together with experimental data

Isospin decomposition of π -nucleon cross section in the T=3/2 and T=1/2components

Hadronic interactions are mostly surface effects \Rightarrow hadron nucleus cross section scale with the target atomic mass A^{2/3} Alfredo Ferrari, AT 28 June 2006 6

Leading two-chain diagram in DPM for p-p scattering. The color (red, blue, and green) and quark combination shown in the figure is just one of the allowed possibilities

Leading two-chain diagram in DPM for π^+ -p scattering. The color (red, blue, and green) and quark combination shown in the figure is just one of the allowed possibilities

Inelastic hN interactions: examples

Nucleon Fermi Motion

• Fermi gas model: Nucleons = Non-interacting Constrained Fermions Momentum distribution $\propto \frac{dN}{dk} = \frac{|k|^2}{2\pi^2}$

for k up to a (local) Fermi momentum $k_F(r)$ given by

$$k_F(r) = [3\pi^2 \rho_N(r)]^{\frac{1}{3}}$$

The Fermi energy ($k_F \approx 1.36 \text{ fm}$, $P_F \approx 260 \text{ MeV/c}$, $E_F \approx 35 \text{ MeV}$, at nuclear max. density) is customarily used in building a self-consistent Nuclear Potential

Depth of the potential well = Fermi Energy + Nuclear Binding Energy

(Generalized) IntraNuclear Cascade

- Primary and secondary particles moving in the nuclear medium
- Target nucleons motion and nuclear well according to the Fermi gas model
- Interaction probability
 - σ_{free} + Fermi motion × $\rho(\mathbf{r})$ + exceptions (ex. π)
- Glauber cascade at higher energies
- Classical trajectories (+) nuclear mean potential (resonant for π)
- Curvature from nuclear potential \rightarrow refraction and reflection
- Interactions are incoherent and uncorrelated
- Interactions in projectile-target nucleon $CMS \rightarrow Lorentz boosts$
- Multibody absorption for π, μ⁻, K⁻
- Quantum effects (Pauli, formation zone, correlations...)
- Exact conservation of energy, momenta and all addititive quantum numbers, including nuclear recoil

Advantages and Limitations of (G)INC

Advantages

- No other model available for energies above the pion threshold production (except QMD models)
- No other model for projectiles other than nucleons
- Easily available for on-line integration into transport codes
 - Every target-projectile combination without any extra information
 - Particle-to-particle correlations preserved
 - Valid on light and on heavy nuclei Capability of computing cross sections, even when they are unknown

Limitations

- Low projectile energies E<200MeV are badly described (partially solved in GINC+preequilibrium)
- Quasi electric peaks above 100MeV are usually too sharp
- Coherent effect as well as direct transitions to discrete states are not included
- Nuclear medium effects, which can alter interaction properties are not taken into account (*partially solved in GINC*)
- Multibody processes (i.e. interaction on nucleon clusters) are not included (solved in GINC)
- Composite particle emissions (d,t,³He,α) cannot be easily accommodated into INC, but for the evaporation stage (solved in GINC through coalescence)
- Backward angle emission poorly described (solved in GINC)

hA at high energies: Glauber-Gribov cascade with formation zone

- Glauber cascade
 - Quantum mechanical method to compute Elastic, Quasi-elastic and Absorption hA cross sections from Free hadron-nucleon scattering + nuclear ground state
 - Multiple Collision expansion of the scattering amplitude
- Glauber-Gribov
 - Field theory formulation of Glauber model
 - Multiple collisions <-> Feynman diagrams
 - High energies: exchange of one or more Pomerons with one or more target nucleons (a closed string exchange)
- Formation zone (=materialization time)

Glauber Cascade

Quantum mechanical method to compute all relevant hadron-nucleus, cross sections from hadron-nucleon scattering: $S_{hN}(\vec{b},s) = e^{i\chi_{hN}(\vec{b},s)} = \eta_{hN}(\vec{b},s)e^{2i\delta_{hN}(\vec{b},s)}$

Total
$$\sigma_{hAT}(s) = 2\int d^2 \vec{b} \int d^3 \vec{u} |\Psi_i(\vec{u})|^2 \left[1 - \prod_{j=1}^A \operatorname{Re} S_{hN}(\vec{b} - \vec{r}_{j\perp}, s)\right]$$

Elastic $\sigma_{hAel}(s) = \int d^2 \vec{b} \left|\int d^3 \vec{u} |\Psi_i(\vec{u})|^2 \left[1 - \prod_{j=1}^A S_{hN}(\vec{b} - \vec{r}_{j\perp}, s)\right]\right|^2$

Scattering
$$\sigma_{hA\Sigma f}(s) \equiv \sum_{f} \sigma_{hAfi}(s) = \int d^{2}\vec{b} \int d^{3}\vec{u} |\Psi_{i}(\vec{u})|^{2} \left[1 - \prod_{j=1}^{A} S_{hN}(\vec{b} - \vec{r}_{j\perp}, s)\right]^{2}$$

Absorption (particle prod.) $\sigma_{hA abs}(s) \equiv \sigma_{hAT}(s) - \sigma_{hA\Sigma f}(s)$ $= \int d^{2}\vec{b} \int d^{3}\vec{u} |\Psi_{i}(\vec{u})|^{2} \left\{ 1 - \left\{ \prod_{j=1}^{A} 1 - \left[1 - \left| S_{hN}(\vec{b} - \vec{r}_{j\perp}, s)^{2} \right| \right\} \right\}$

Alfredo Ferrari, AT 28 June 2006

Glauber cross section calculations

Self-consistent
calculation including "a
priori" inelastic $\widehat{00}$
bscreening through the
substitution where λ is
the ratio of the single
diffractive amplitude, 1
side only, over the
elastic amplitude300
200

 $\Gamma(s,\vec{b}) \to \widehat{\Gamma}_{hN}(s,\vec{b}) = \begin{bmatrix} 1 & \lambda \\ \lambda & 1 \end{bmatrix} \Gamma_{hN}(s,\vec{b})$

Proton Carbon cross sections with inelastic screening accounted for

Please note the ambiguity of the non-elastic exp. results, almost 2-population like

Gribov interpretation of Glauber multiple collisions

Therefore the absorption cross section is just the integral in the impact parameter plane of the probability of getting at least one non-elastic hadron-nucleon collision

and the overall average number of collision is given by

$$\langle \nu \rangle = \frac{Z\sigma_{hpr} + N\sigma_{hnr}}{\sigma_{hAabs}}$$

- Glauber-Gribov model = Field theory formulation of Glauber model
- Multiple collision terms \Rightarrow Feynman graphs
- At high energies : exchange of one or more pomerons with one or more target nucleons
- In the Dual Parton Model language: (neglecting higher order diagrams): Interaction with *n* target nucleons $\Rightarrow 2n$ chains
 - Two chains from projectile valence quarks + valence quarks of one target nucleon ⇒valence-valence chains
 - 2(n-1) chains from sea quarks of the projectile + valence quarks of target nucleons \Rightarrow 2(n-1) sea-valence chains

Leading two-chain diagrams in DPM for *p-A* Glauber scattering with 4 collisions. The color (red blue green) and quark combinations shown in the figure are just one of the allowed possibilities

Leading two-chain diagrams in DPM for $\pi^{+}A$ Glauber scattering with 3 collisions.

From one to many

While the Glauber analytical calculation of cross sections is accurate down to sub-GeV energy, the interpretation in terms of explicit multiple collisions and its MonteCarlo implementation are less sound for projectile energies < 5-10 GeV

Formation zone

Naively: "materialization" time (originally proposed by Stodolski). Qualitative estimate:

In the frame where p//=0

$$\bar{t} = \Delta t \approx \frac{\hbar}{E_T} = \frac{\hbar}{\sqrt{p_T^2 + M^2}}$$

Particle proper time

$$\tau = \frac{M}{E_T} \bar{t} = \frac{\hbar M}{p_T^2 + M^2}$$

Going to the nucleus system

$$\Delta x_{for} \equiv \beta \ c \cdot t_{lab} \approx \frac{p_{lab}}{E_T} \overline{t} \approx \frac{p_{lab}}{M} \tau = k_{for} \frac{\hbar p_{lab}}{p_T^2 + M^2}$$

Condition for possible reinteraction inside a nucleus:

$$\Delta x_{for} \le R_A \approx r_0 A^{\frac{1}{3}}$$

Rapidity distribution of charged particles produced in 250 GeV π^+ collisions on Aluminum (left) and Gold (right) Points: exp. data (Agababyan et al., ZPC50, 361 (1991)).

Rapidity distribution of charged particles produced in 250 GeV π^+ collisions on Aluminum (left) and Gold (right) Points: exp. data (Agababyan et al., ZPC50, 361 (1991)).

Rapidity distribution of charged particles produced in 250 GeV π^+ collisions on Aluminum (left) and Gold (right) Points: exp. data (Agababyan et al., ZPC50, 361 (1991)).

Rapidity distribution of charged particles produced in 250 GeV π^+ collisions on Aluminum (left) and Gold (right) Points: exp. data (Agababyan et al., ZPC50, 361 (1991)).

Preequilibrium emission

For E > π production threshold \rightarrow only (G)INC models At lower energies a variety of preequilibrium models

Two leading approaches

The quantum-mechanical multistep model:

Very good theoretical background Complex, difficulties for multiple emissions The semiclassical exciton model Statistical assumptions Simple and fast Suitable for MC

Statistical assumption:

any partition of the excitation energy E^* among N, N = N_h +N_p, excitons has the same probability to occur

Step: nucleon-nucleon collision with $N_{n+1}=N_n+2$ ("never come back approximation)

Chain end = equilibrium = N_n sufficiently high or excitation energy below threshold

 N_1 depends on the reaction type and cascade history

Angle-integrated ⁹⁰Zr(p,xn) at 80.5 MeV

The various lines show the total, INC, preequilibrium and evaporation contributions

Experimental data from M. Trabandt et al., Phys. Rev. C39, 452 (1989)

Alfredo Ferrari, AT 28 June 2006

Equilibrium particle emission (evaporation, fission and nuclear break-up)

From statistical considerations and the detailed balance principle, the probabilities for emitting a particle of mass $m_{j,}$ spin $S_{j,}$ h and energy E, or of fissioning are given by:

(i, f for initial/final state, Fiss for fission saddle point)

Probability per unit time of emitting a particle j with energy E

$$P_{j} = \frac{(2S_{j}+1)m_{j}c}{\pi^{2}\hbar^{3}} \int_{V_{j}}^{U_{i}-Q_{j}-\Delta_{f}} \frac{\rho_{f}(U_{f})}{\rho_{i}(U_{i})} \sigma_{inv}(E) EdE$$

Probability per unit time of fissioning	$P_{Fiss} = \frac{1}{2\pi\hbar} \int_0^{U_i - B_{Fiss}} \frac{\rho_{Fiss}(U_i - B_{Fiss} - E)}{\rho_i(U_i)} dE$
 p's: nuclear level densities U's: excitation energies V_j's: possible Coulomb barrier for emitting a particle type j 	 Q_j's: reaction Q for emitting a particle type j σ_{inv}: cross section for the inverse process Δ's: paining approise

Neutron emission is strongly favoured because of the lack of any barrier Heavy nuclei generally reach higher excitations because of more intense cascading

Residual Nuclei

- The production of residuals is the result of the last step of the nuclear reaction, thus it is influenced by all the previous stages
- Residual mass distributions are very well reproduced
- Residuals near to the compound mass are usually well reproduced
- However, the production of specific isotopes may be influenced by additional problems which have little or no impact on the emitted particle spectra (Sensitive to details of evaporation, Nuclear structure effects, Lack of spin-parity dependent calculations in most MC models)

Log₁₀ N of residual nuclei

Alfredo Ferrari, AT 28 June 2006

Example of fission/evaporation

- Quasi-elastic products
- Spallation products
- Deep spallation products

- Fission products
- Fragmentation products
- Evaporation products

Heavy ion interaction models

Intermediate energy range (~100 MeV/n to a few GeV/n): three main classes of microscopic models suitable for MonteCarlo. They are microscopic kinetic models including the propagation and mutual interactions of pion and nucleon resonances. Similar two body collision terms mostly based on free scattering

- (Generalized)IntraNuclear Cascade model
 - Nuclear mean field
 - Semiclassical trajectories
- Quantum Molecular Dynamics models
 - Gaussian packet wave functions for nucleons
 - Nucleon mean field as the sum of two-body potentials
- BUU (Boltzmann-Uehling-Uhlenbeck) eq. based models
 - Time evolution equation of the nucleon (pions...), one-body phase-space distribution
 - Test particle method (semiclassical trajectories in a self-consistent mean field)

(G)INC and QMD models successfully extended up to very high energies and all hadrons with Glauber + string models (like DPM)

Alfredo Ferrari, AT 28 June 2006

Alfree Mass number
FLUKA with modified RQMD-2.4

Double-differential neutron yield by 400 MeV/n Ar (left) and Fe (right) ions on thick Al targets. Histogram: FLUKA. Experimental data points: Phys. Rev. C62, 044615 (2000)

Ar + **Al** double differential neutron production cross - section

Simulated Charge distribution (red and yellow solid histograms) compared to experimental data collected in central collisions (grey points) by the AMPHORA detector at SARA. The simulation results are sensitive to the experimental cuts, as can be seen comparing the yellow line, obtained imposing a multiplicity cut of $M_z > 5$ at the end of the fast stage of the reaction, described by QMD, to the red line, obtained adding at the end of the interaction a multiplicity cut of $M_z > 10$ and the requirements of quasicomplete events taking into account the acceptance of the detector.

Real and Virtual Photonuclear Interactions

Photonuclear reactions

- Giant Dipole Resonance interaction (special database)
- Quasi-Deuteron effect
- Delta Resonance energy region
- Vector Meson Dominance in the high energy region
- (G)INC, preequilibrium and evaporation like for hadron-nucleus

Virtual photon reactions

- Muon photonuclear interactions
- Electromagnetic dissociation

Photonuclear int.: example

Reaction: $^{208}Pb(\gamma, x n)$ $20 \le E\gamma \le 140 \text{ MeV}$

Cross section for multiple neutron emission as a function of photon energy, Different colors refer to neutron multiplicity $\ge n$, with $2 \le n \le 8$

Symbols: exp data (NPA367, 237 (1981) ; NPA390, 221 (1982))

Lines: FLUKA

Alfredo Ferrari, AT 28 June 2006

Electromagnetic dissociation

Electromagnetic dissociation: σ_{EM} increasingly large with (target) Z's and energy. Already relevant for few GeV/n ions on heavy targets ($\sigma_{EM} \sim 1$ b vs $\sigma_{nucl} \sim 5$ b for 1 GeV/n Fe on Pb)

$$\sigma_{1\gamma} = \int \frac{d\omega}{\omega} n_{A_1}(\omega) \sigma_{\gamma} n_{A_2}(\omega) \propto Z_1^2$$

42

Left: ²⁸Si(g,tot) as recorded in FLUKA database, 8 interval Bezier⁻¹ fit as used for the Electromagnetic Dissociation event generator.

Right: calculated total, 1nX and 2nX electromagnetic dissociation cross sections for 30 A GeV Pb ions on Al, Cu, Sn and Pb targets. Points - measured cross sections of forward 1n and 2n emissions as a function of target charge (M.B. Golubeva et al., in press) Alfredo Ferrari, AT 28 June 2006 43

Alfredo Ferrari, AT 28 June 2006

Examples of Applications

CERN-EU High-Energy Reference Field (CERF) facility

Location of Samples:

Behind a 50 cm long, 7 cm diameter copper target, centred with the beam axis

Calculation of Induced Activity with FLUKA

- Simulation of particle interactions and transport in the target, the samples, as well as the tunnel/cavern walls
- Separate simulations for proton and pion beam
- Simulations of isotope production via
 - High-energy processes
 - Low-energy neutron interactions
- Transport thresholds
 - Neutrons: down to thermal energies
 - Other hadrons: until stopped or captured
 - No electromagnetic cascade was simulated
- Calculated quantities
 - Radioactive isotope production per primary particle
 - (Star density and particle energy spectra in the samples)
- Calculation of build-up and decay of radioactive isotopes for specific irradiation and cooling patterns including radioactive daughter products

Activation: Stainless Steel

Table 1: Stainless Steel, cooling times 1d 6h 28m, 17d 10h 39m

Isotope	$t_{1/2}$	Exp		OLD FLUKA/Exp		FLUKA/Exp	
		$\rm Bq/g\pm\%$			\pm %		\pm %
Be 7	53.29d	0.205	24	0.096	34	1.070	30
Na 24	14.96h	0.513	4.3	0.278	8.6	0.406	13
K 43	22.30h	1.08	4.6	0.628	8.7	0.814	11
Ca 47	4.54d	0.098	25	0.424	44	(0.295)	62)
Sc 44	3.93h	13.8	4.8	0.692	5.8	0.622	6.2
mSc 44	58.60h	6.51	7.1	1.372	8.1	1.233	8.6
Sc 46	83.79d	0.873	8.3	0.841	9.1	0.859	9.5
Sc 47	80.28h	6.57	8.2	0.970	9.7	1.050	13
Sc 48	43.67h	1.57	5.2	1.266	8.4	1.403	11
V 48	$15.97 \mathrm{d}$	8.97	3.1	1.464	3.8	1.354	4.8
Cr 48	21.56h	0.584	6.7	1.084	11	1.032	12
Cr 51	27.70d	15.1	12	1.261	13	1.231	13
Mn 54	312.12d	2.85	10	1.061	10	1.060	11
Co~55	17.53h	1.04	4.6	1.112	7.7	0.980	10
Co~56	77.27d	0.485	7.6	1.422	9.0	1.332	10
Co~57	271.79d	0.463	11	1.180	12	1.140	12
Co 58	70.82d	2.21	5.9	0.930	6.3	0.881	6.9
Ni 57	35.60h	3.52	4.5	1.477	6.5	1.412	8.2

M. Brugger, et al., Proceedings of the Int. Conf. on Accelerator Applications (AccApp'05), Venice, Italy, 2005

Activation: Aluminum

Isotope	$t_{1/2}$	Exp		OLD FLUKA/Exp		FLUKA/Exp	
		$\rm Bq/g\pm\%$			\pm %		\pm %
Be 7	$53.29 \mathrm{d}$	0.789	13	0.364	16	0.688	19
Na 22	2.60y	0.365	9.6	0.841	11	0.752	11
Na 24	14.96h	38.6	3.6	0.854	4.0	0.815	4.6
Sc 44	3.93h	0.229	24	2.219	27	0.820	36
Sc 46	83.79d	0.025	16	1.571	19	0.902	28
Sc 47	80.28h	0.163	12	0.986	27	(1.486	43)
V 48	$15.97\mathrm{d}$	0.199	7.4	0.931	18	(0.938	29)
Cr 51	27.70d	0.257	17	0.873	23	0.942	28
Mn 52	5.59d	0.224	5.6	2.369	9.6	0.936	24
Mn 54	312.12d	0.081	11	0.972	15	0.917	19
Co 57	271.79d	0.00424	32	0.833	50	(0.760	67)
Co 58	70.82d	0.019	22	1.820	27	0.841	39

Table 2: Al, cooling times 1d 16h, 16d 08h , 51d 09h $\,$

M. Brugger, et al., Proceedings of the Int. Conf. on Accelerator Applications (AccApp'05), Venice, Italy, 2005

LHC: Conclusions on activation study

- Good agreement was found between the measured and calculated values for most of the isotopes and samples
- The large number of samples and variety of different materials offers a extensive possibility to study isotope production
- Multifragmentation (NOW DEVELOPED AND PRESENTED AT INT. CONF. ON NUCLEAR DATA FOR SCIENCE AND TECHN. (Santa Fe 2004)) has significantly improved the agreement for intermediate and small mass isotopes
- As a consequence, the calculation of remanent dose rates based on an explicit simulation of isotope production and transport of radiation from radioactive decay with FLUKA should also give reliable results \rightarrow Part 2

Part 2: Radioactivity Produced in LHC Materials: Residual Dose Rates

- Levels of residual dose rates are an important design criterion for any high energy facility
- Residual dose rates for arbitrary locations and cooling times are so far predicted with a rather poor accuracy
 - typically based on the concept of so-called w-factors and comprising several severe restrictions
 - layouts and material composition of beam-line components and surrounding equipment are often very complex
- Anapproach based on the explicit generation and transport of gamma and beta radiation from radioactive decay should result in much more accurate results

Cosmic Rays

Cosmic Ray physics: Atmospheric Showers, and Space missions

Three different streams:

 Basic research on Cosmic Ray physics (muons, neutrinos, EAS, underground physics,...)

 Application to dosimetry in civil aviation (DOSMAX Collaboration: Dosimetry of Aircrew Exposure to Radiation During Solar Maximum, research project funded by the EU)

• Application to Space missions, in particular manned missions to MARS

Special add-ons required, including:

- Primary spectra from Z = 1 to Z = 28 (derived from NASA and updated to most recent measurements.)
- Solar Modulation model (correlated to neutron monitors)
- Atmospheric model (MSIS Mass-Spectrometer-Incoherent-Scatter)
- 3D geometry of Earth + atmosphere
- Geomagnetic model

(3D) Calculation of Atmospheric V Flux

The first 3-D calculation of atmospheric neutrinos was done with FLUKA.

The enhancement in the horizontal direction, which cannot be predicted by a 1-D calculation, was fully unexpected, but is now generally acknowledged.

Alfredo Ferrari, AT 28 June 2006

Dosimetry Applications

Ambient dose equivalent from neutrons at solar maximum on commercial flights from Seattle to Hamburg and from Frankfurt to Johannesburg.

Solid lines: FLUKA simulation

Alfredo Ferrari, AT 28 June 2006

Radiation sources in space

Galactic Cosmic Rays

spectrum: 87% protons, 12% He ions and 1% heavier ions (in fluence) with peaks at 1 GeV/n

flux: 4 particles/($cm^2 s$) at solar min.

Solar Particle Events

spectrum: 90% protons, 10% heavier ions with energy mainly below

flux: up to $\sim 10^{10}$ particles/cm² in some hrs.

dose: order of Sv, strongly dependent on shielding and organ

Alfredo Ferrari, AT 28 June 2006 NASA pub. 1998

Dose rates in different missions

Shuttle

0.23 mSv/day

ISS

0.5-1 mSv/day

Apollo

1.3 mSv/day

by comparison: an intercontinental flight rarely implies doses larger than 0.1 mSv; the radiation background on Earth is \approx mSv/year

Methods **Quality factors** Yields of "Complex Lesions" Dose GCR and SPE spectra-**Dose Equivalent** "Biological Dose" mathematical phantom "voxel" phantom (Pelliccioni et al.) (Zankl et al.)

Al shield thickness (g/cm²) "biological" dose (CLs/cell)

Al shield thickness (g/cm²)

• dramatic dose decrease with increasing shielding (i.e. from 13.3 to 0.62 Sv in the range 1-10 g/cm²)

• major contribution from primary protons (the role of nuclear reaction products is not negligible only for equivalent and "biological" dose)

much lower doses to liver than to skin (e.g. 1.0 vs. 13.3 Sv behind 1 g/cm² AI)

 larger relative contribution of nuclear reaction products for liver than for skin (e.g. 14% vs. 7% behind 1 g/cm² AI)

with respect to skin, internal organs have: 1) similar dose but smaller dose equivalent (~ 1.3 vs. 1.7 mSv/day); 2) larger relative contributions from nuclear interaction products

GCR at solar min. - annual effective dose

male dose fem. dose A (Sv) (Sv) (g/cm²) 0.43 0.3 0.47 0.44 0.47 0.46 0.41 0.41 0.43 0.42 0.42

the "effective dose" E is a sum over different organ doses, weighted by "tissue weighting factors"

gonads: 0.20

bone marrow, colon, lung, stomach: 0.12 bladder, breast, liver, esophagous, thyroid: 0.05 skin, bone surface: 0.01 others: 0.05

ICRP 60, 1990

Therapy related features

With the contribution of: K.Parodi, H.Paganetti, T.Bortfeld, W.Enghardt, F.Fiedler, F.Sommerer Massachusetts General Hospital, Boston Heidelberg, Ion Therapy Center, Germany Rossendorf, Germany CERN, Geneva, Switzerland

Part of the material presented in the following is still unpublished. I am able to show it thanks to the courtesy of K.Parodi and MGH . It is not included in the official file of this presentation

HadroTherapy applications of MC:

- Powerful for cross checking treatment plannings, (particularly for dis-homogeneities)
- Possibility of describing complex geometries including voxel structures imported out of raw CT scans
- Essential (offline or online) for understanding heavy ion fragmentation
- Without alternatives for nuclear reaction related issues, like online PET monitoring

Petoussi-Henss et al, 2002 The GOLEM phantom

Bragg peaks vs exp. data: ²⁰Ne @ 670 MeV/n

Alfredo Ferrari, AT 28 June 2006

Alfredo Ferrari, AT 28 June 2006

Alfredo Ferrari, AT 28 June 2006

72

Alfredo Ferrari, AT 28 June 2006

Alfredo Ferrari, AT 28 June 2006