FLUKA Studies for the LHC Beam Scrapers

LCWG meeting, May 7th 2007

F. Cerutti for the FLUKA team

Rationale

scrapers have to withstand a significant fraction of the beam halo (down to few sigmas)

possibility of being used in an emergency to 'dump' the beam?

choice of thickness, material, and speed

Outline

Study of different materials/thicknesses

- ⁿ for a Gaussian tail above $3\sigma_x$
- for a low impact parameter
 [multiturn evaluation of the peak in the adiabatic assumption]

Short thickness (alignment accuracy) Cu and W (spreading efficiency)

Huge ionization peak for tiny beam size

Total energy deposition per proton

Scraper at rest at $3\sigma_x$ Gaussian beam tail

4

Carbon – Maximum Energy Deposition (multiturn)

Copper – Maximum Energy Deposition (multiturn)

multiturn evaluation of energy deposition

$$\begin{split} E(x, y, z) &= N_p E_1(x, y, z) + N_p P_s E_1(x, y, z) + N_p P_s^{-2} E_1(x, y, z) + \\ &+ \dots = N_p E_1(x, y, z) \sum_{n=0}^{\infty} P_s^{-n} = \\ &= N_p E_1(x, y, z) \left[1 - P_s\right]^{-1} \end{split}$$

Survival probability vs impact parameter

Carbon – Maximum Energy Deposition (multiturn)

Aluminum-Maximum Energy Deposition (multiturn)

Alignment accuracy

the discrepancy between the scraper thickness and the effective thickness becomes important at low impact parameters

rectangular x-profile

Beam size effect on the peak evaluation

Sectional energy deposition map

averaged over the 1 cm scraper thickness

Fitting function

$$f(x,y) = A \exp\left(-G(x-c)^2\right) \exp\left(-Fy^2\right) + B \frac{\exp\left(-G(x-c)^2\right)}{(1+(x-C)^2/D^2)} \frac{\exp\left(-Fy^2\right)}{(1+y^2/E^2)}$$

 A = 29.7 $C = 3.3357 \ 10^{-6}$ F = 63.644

 B = 53412 $D = 1.2238 \ 10^{-6}$ G = 51034

 E = 0.03155

$$x, y \text{ [cm]} = f(x, y) \text{ [GeV/(p cm^3)]}$$

reasonably preserving:

1. the peak (18.8 vs the original 19.3 TeV/(cm3*p))

2. the integral over the peak bin (100nm x 100nm x 1cm) (1.71 vs 1.93 keV/p)

3. the integral over the peak region (0 < x < 0.1mm,-0.35 < y < 0.35mm, 0 < z < 1cm) (17.3 vs 16.4 MeV/p).

4. the integral over the full scraper (40 vs 33 MeV/p)

Heat diffusion over a bunch time scale

assuming the number of protons per bunch above $2\sigma_x$ (the whole Gaussian tail concentrated on 100nm)

A. Bertarelli

Total energy deposition per proton

scraper thickness	Cu	W
[mm]	[MeV/p]	
0.1	0.160	0.386
0.5	0.866	2.208
1	1.841	4.871
5	12.396	42.043
10	32.782	165.987

Conclusions

- n How to reduce the heat load on the scraper edge due to bunch piling up? (How low the scraper speed has to be?)
- Distributions of *impinging* (including coming back) protons are needed for a more realistic sampling. (Their integral gives also the normalization factor for cooling requirements)
- Loss maps in the scrapers are useful for the evaluation of the impact on the warm/cold section elements (later!)

Scraper loss maps

