

Impact of the RC filters on BLM thresholds

Mariusz Sapinski CERN, 2010.07.28

Motivation

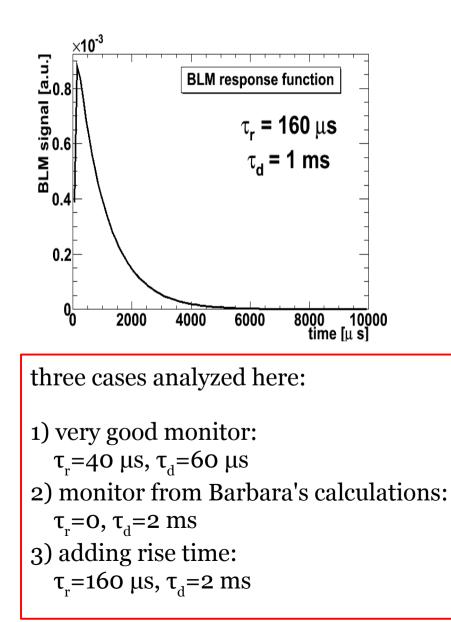
- All BLM monitors on LHC suffer from signal delay effect,
- Up to know the signal delay effects are taken into account when preparing thresholds in a rudimentary way,
- Since this year large RC filters have been introduced the problem needs more study,
- In particular loss evolution in time is an important parameter.

Monitors with small filters, values from Post Mortem analysis.

Table 1. Technical Details for MQM and MSI monitors with sman inters							
Expertname	AnalogFE	Cable length	Rise time	Time constant			
BLMQI.06R8.B2E10 MQML	UA87 BY06 2 2 5	$55\mathrm{m}$	$0.16\mathrm{ms}$	$1.453\mathrm{ms}$			
BLMQI.06R8.B2E20 MQML	UA87 BY06 2 2 3	$55\mathrm{m}$	$0.16\mathrm{ms}$	$1.326\mathrm{ms}$			
BLMQI.06R8.B2E30 MQML	UA87 BY06 2 2 1	$55\mathrm{m}$	$0.16\mathrm{ms}$	$1.076\mathrm{ms}$			
BLMQI.08R8.B2E10 MQML	UA87 BY06 2 6 5	$55\mathrm{m}$	$0.16\mathrm{ms}$	$1.521\mathrm{ms}$			
BLMQI.08R8.B2E20 MQML	UA87 BY06 2 6 3	$55\mathrm{m}$	$0.16\mathrm{ms}$	$1.470\mathrm{ms}$			
BLMQI.08R8.B2E30 MQML	UA87 BY06 2 6 1	$55\mathrm{m}$	$0.16\mathrm{ms}$	$1.134\mathrm{ms}$			
BLMQI.07R8.B2E10 MQM	UA87 BY06 2 3 5	$40\mathrm{m}$	$0.16\mathrm{ms}$	$1.366\mathrm{ms}$			
BLMQI.07R8.B2E20 MQM	UA87 BY06 2 3 3	$40\mathrm{m}$	$0.16\mathrm{ms}$	$1.307\mathrm{ms}$			
BLMQI.07R8.B2E30 MQM	UA87 BY06 2 3 1	$40\mathrm{m}$	$0.16\mathrm{ms}$	$0.964\mathrm{ms}$			
BLMEI.06L2.B1E10 MSIB	UA23 BY07 1 10 1	-	$0.16\mathrm{ms}$	$1.34\mathrm{ms}$			
BLMEI.06L2.B1E20 MSIB	UA23 BY07 1 10 2	-	$0.12\mathrm{ms}$	$1.265\mathrm{ms}$			
BLMEI.06L2.B1E30 MSIB	UA23 BY07 1 10 3	-	$0.12\mathrm{ms}$	$1.249\mathrm{ms}$			
BLMEI.06L2.B1E10 MSIA	UA23 BY07 1 10 4	-	$0.12\mathrm{ms}$	$1.315\mathrm{ms}$			
BLMEI.06L2.B1E20 MSIA	UA23 BY07 1 10 5	-	$0.16\mathrm{ms}$	$1.221\mathrm{ms}$			
BLMEI.06L2.B1E30 MSIA	UA23 BY07 1 10 6	-	$0.12\mathrm{ms}$	$0.978\mathrm{ms}$			
BLMEI.06R8.B2E10 MSIB	UA87 BY06 1 10 6	$88\mathrm{m}$	$0.2\mathrm{ms}$	$2.277\mathrm{ms}$			
BLMEI.06R8.B2E20 MSIB	UA87 BY06 1 10 5	$88\mathrm{m}$	$0.12\mathrm{ms}$	$1.368\mathrm{ms}$			
BLMEI.06R8.B2E30 MSIB	UA87 BY06 1 10 5	$88\mathrm{m}$	$0.12\mathrm{ms}$	$1.895\mathrm{ms}$			
BLMEI.06R8.B2E10 MSIA	UA87 BY06 1 10 4	$88\mathrm{m}$	$0.16\mathrm{ms}$	$1.787\mathrm{ms}$			
BLMEI.06R8.B2E20 MSIA	UA87 BY06 1 10 3	$88\mathrm{m}$	$0.12\mathrm{ms}$	$1.637\mathrm{ms}$			
BLMEI.06R8.B2E30 MSIA	UA87 BY06 1 10 1	$88\mathrm{m}$	$0.12\mathrm{ms}$	$1.189\mathrm{ms}$			

Table 1: Technical Details for MQM and MSI monitors with small filters

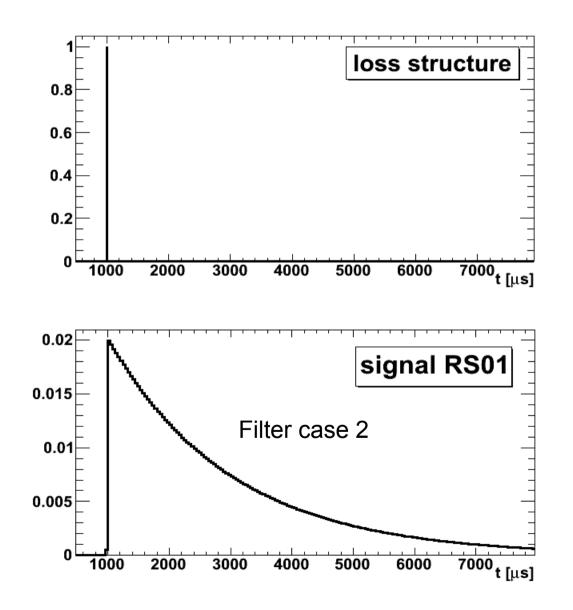
Courtesy of Annika Nordt



Running Sums: reminder

Name	Duration [µs]	40-µs steps	Refresh rate 40-µs steps
RS01	40	1	1
RS02	80	2	1
RS03	320	8	1
RS04	640	16	1
RS05	2560	64	2
RS06	10240	256	2

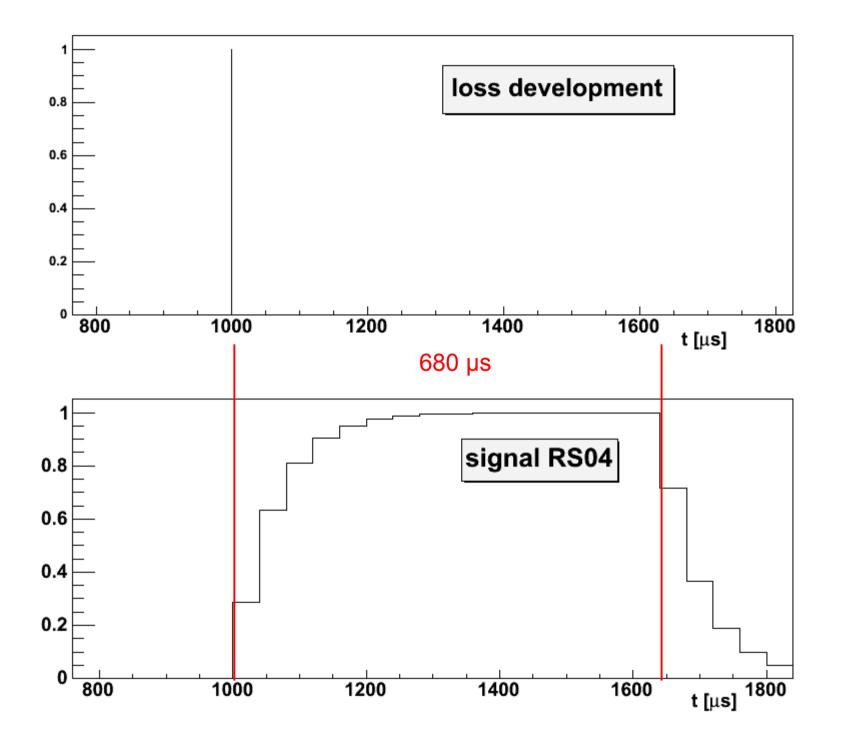
Numerical model



- step 1 μ s
- 10240 steps (max RS06)
- rise: $a(1-exp(t/\tau_r))$ for $o < t < \tau_r$
- decay: $b \exp(-(t-\tau_r)/\tau_d)$ for $t > \tau_r$
- continuity: b=a(1-exp(-1))
- normalization:

 $\int_0^\infty R(t)dt = 1$

Response to δ loss


Loss placed 1000 µs after the start of the calculations.

Delay defined as distance from the signal maximum to the loss maximum.

Response to δ loss in the beginning of RS01- results

	Case 1 max delay		Cas	se 2	Case 3	
			max	delay	max	delay
RS01	0.348	80	0.0199	40	0.0191	200
RS02	S02 0.633 80	0.0395	80	0.0377	240	
RS03	03 0.993 320	320	0.149	320	0.143	440
RS04	1.0	680	0.290	680	0.281	760
RS05	1.0	2280	0.732	2600	0.723	2600

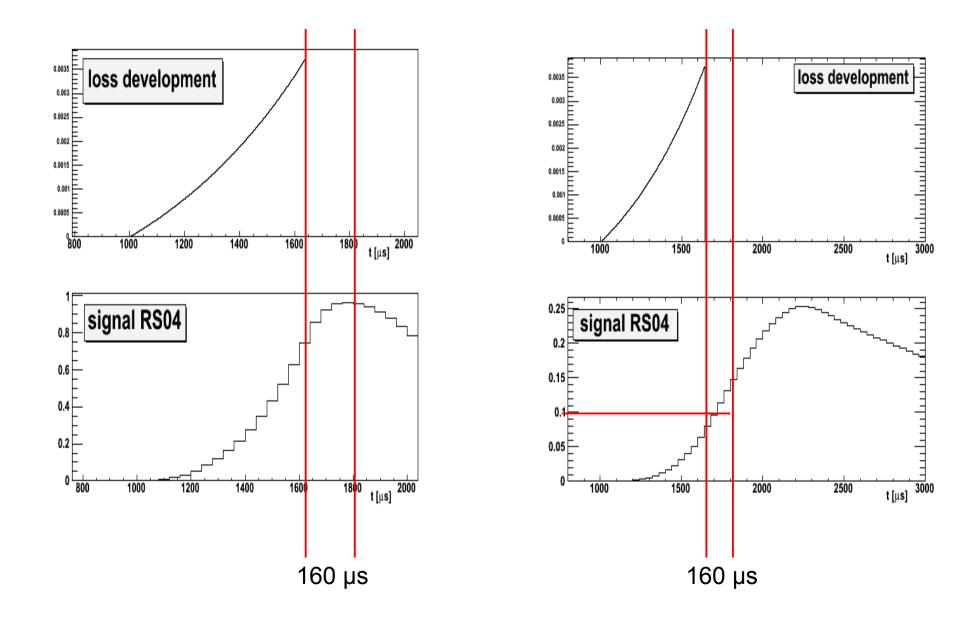
Why so large? See next page.

Response to δ loss in the middle of RS01 - results

	Case 1 max delay		Cas	se 2	Case 3	
			max	delay	max	delay
RS01	0.403	60	0.0197	60	0.0189	220
RS02	0.652	100	0.0391	100	0.0377	220
RS03	0.991	300	0.147	340	0.143	460
RS04	1.000	660	0.287	700	0.282	780
RS05	RS05 1.000 2260		0.730	2580	0.724	2660

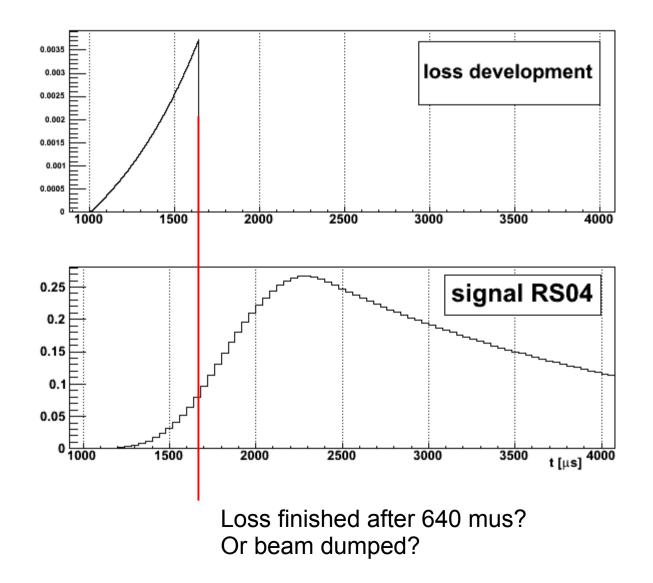
Response to δ loss at the end of RS01 - results

	Case 1 max delay		Cas	se 2	Case 3	
			max	delay	max	delay
RS01	0.348	80	0.0199	40	0.0191	200
RS02	RS02 0.633 80	80	0.0395	80	0.0377	240
RS03	0.993	320	0.149	320	0.143	440
RS04	RS04 1.00 680	0.290	680	0.281	760	
RS05	RS05 1.00 2320		0.727	2560	0.725	2640

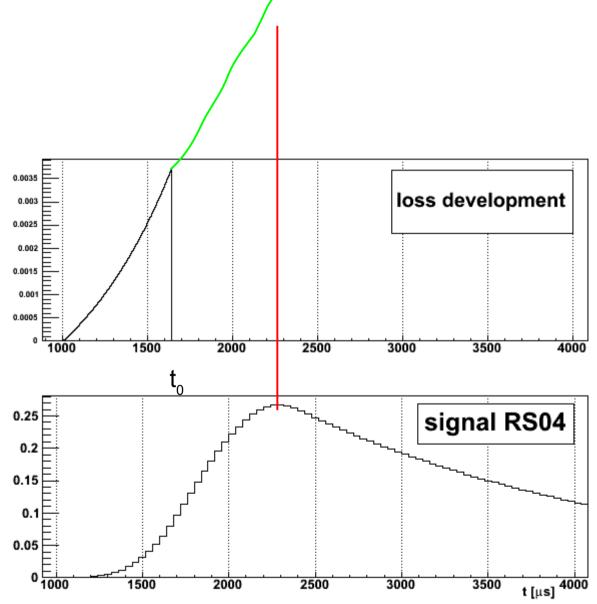

Response to exponential loss lasting t_{RS} and with time constant t_{RS}

Т

	Case 1		Case 2		Case 3		
	max	delay	max	delay	max	delay	signal at delay 1
RS01	0.354	40	0.0198	40	0.0190	200	-
RS02	0.597	80	0.0390	80	0.0375	200	0.0284
RS03	0.906	120	0.142	320	0.140	400	0.0879
RS04	0.974	160	0.269	600	0.267	680	0.148


Delay is calculated with respect to the loss end (maximum). But does it make sense to investigate a loss like that? _{Explanation}

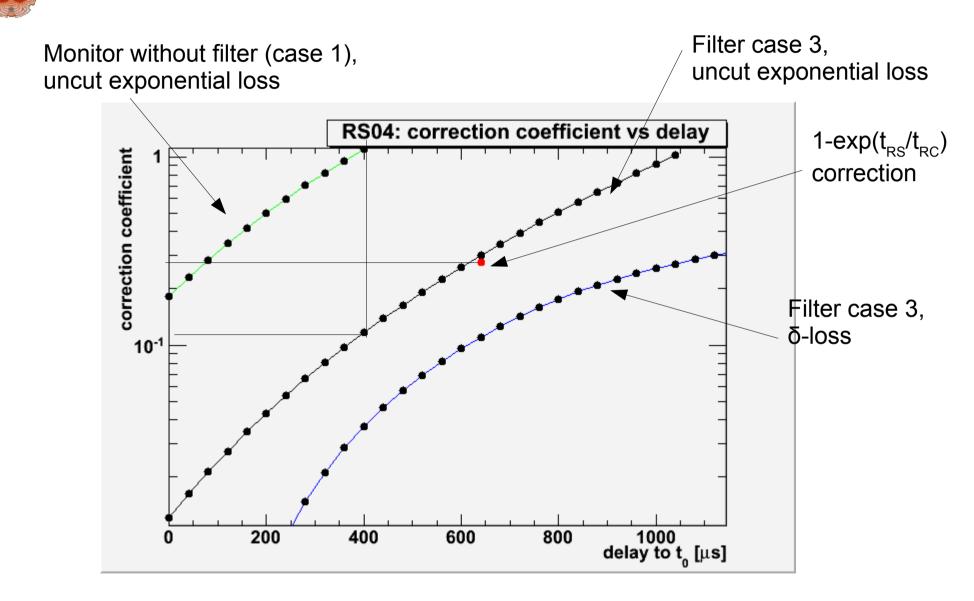
next slide



But does such loss make sense?

Example for RS04

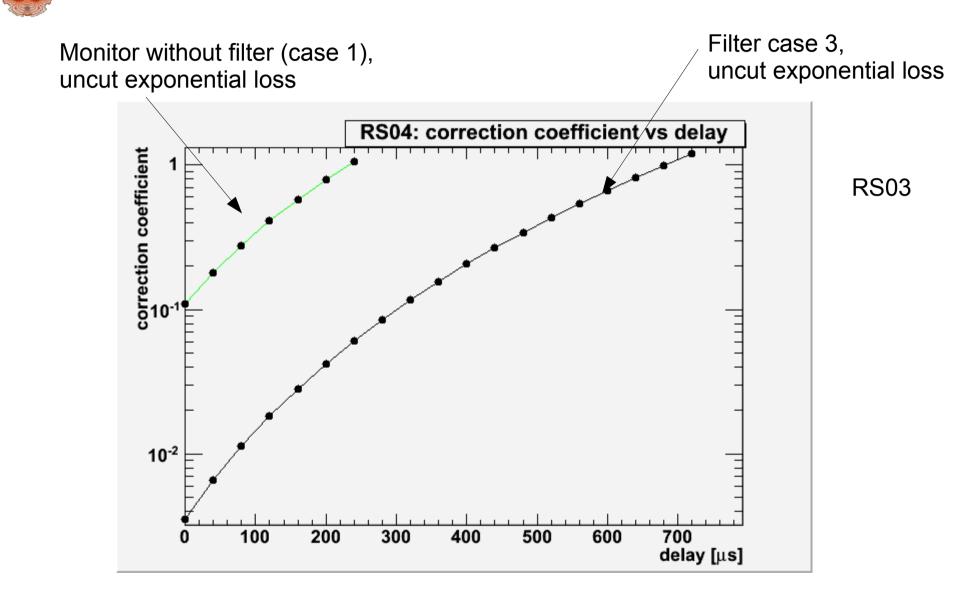
Lets prolongate it with the same time constant and see when we collect whole signal?


Response to exponential loss lasting time constant t_{RS} but prolongated – delays to get whole signal

Time after which whole signal is integrated [µs]

	Case 1	Case 2	Case 3
RS03	240	640	720
RS04	400	1000	1040

Delay versus integrated signal



Conclusions

- 1-exp(t_{RS}/t_{RC}) correction gives delay of t_{RS} (for delta loss, but similarly for uncut exponential)
- Without any filter the delay is also substantial, so the loss due to 1-exp() correction is not so large (RS04, uncut exponential loss: 240µs)
- Reducing correction factor in order to have the same delay as for monitor without filter is feasible, factor 2-4 (depending on the loss evolution)
- Reducing correction factor in order to have no delay would affect all thresholds and would bring them to noise levels in many cases (about factor 100 down).

Delay versus integrated signal

