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Abstract— The commissioning and the exploitation of the LHC 
require a good knowledge of the stability margins of the 
superconducting magnets with respect to beam induced heat 
depositions. Previous studies showed that simple numerical 
models are suitable to carry out stability calculations of multi-
strands cables, and highlighted the relevance of the heat transfer 
model with the surrounding helium. In this paper we present a 
systematic scan of the stability margin of all types of LHC cables 
working at 1.9 K against transient heat depositions. We 
specifically discuss the dependence of the stability margin on the 
parameters of the model, which provide an estimate of the 
uncertainty of the values quoted. The stability margin 
calculations have been performed using a zero-dimensional (0-D) 
numerical model, and a cooling model taking into account the 
relevant helium phases which may appear during a stability 
experiment: it includes Kapitza thermal resistance in superfluid 
He, boundary layer formation and heat transfer in He I, and 
considers the transition from nucleating boiling to film boiling 
during He gas formation.  

 
Index Terms— LHC Superconducting Cables, Stability 

Margins, Transient Heat Depositions, Heat Transfer Coefficients, 
helium Phases. 

I. INTRODUCTION 
NE  of the issues for the operation of the Large Hadron 
Collider (LHC) [1] are the quenches induced in the 

superconducting (SC) magnets by lost particles from high 
energy and high intensity proton beams. In order to cope with 
this problem, a control system has been developed to predict a 
beam induced quench and dump the beam before quenching 
the magnet. This system is based on detectors, the beam loss 
monitor (BLM), which measure the flux of secondary particles 
(hadronic shower) produced during the collision of protons 
with the beam screen, the cold bore and the superconducting 
coils [2]. Reaction thresholds for the BLM’s need to be set 
comparing the energy deposition due to the hadronic shower 
(computed with specific codes [3]) to the expected stability of 
the SC cables in the coil. The efficiency of the BLM system 
will obviously depend on the precision of the estimation of the 
stability margin calculations of the SC cables, which is the aim 
of this work. Similar studies have been carried out by various 
authors [4-6], without investigating the response of the system 
to different perturbation times, and considering a cooling 
model only constituted by the He II and film boiling phases. 
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The work presented here is the follow-up of a previous 
investigation   which   set   the   methodology   to   face   such 
problems [7], simulating numerically a resistive transition in a 
multi-strands SC cable and evaluating iteratively the stability 
against external heat depositions. This allowed determining 
that the most relevant parameter for stability calculations is the 
heat transfer coefficient between strands and He, and that a 
simple easy-to-handle 0-D model can be used instead of more 
complex ones. Indeed it gives a good estimate of the stability 
for energy depositions over a sufficiently long length, in 
particular above 10 cm, which is the case when considering 
transient distributed disturbances such as beam loss. This first 
study only focused on the inner layer cable of the LHC dipoles 
at the nominal operating current and in the peak field region.  

     In this paper, particular attention is paid to build a 
detailed model describing the transient heat exchange between 
strands and He, depending on different He phases. The 
stability of all the LHC SC cables working at an operational 
temperature of 1.9 K is numerically computed with respect to 
the actual range of beam loss perturbation times. A wide 
current range is covered, also considering cables in various 
field regions. Furthermore, the impact of the different He 
phases on results is discussed, and a parametric study on the 
effectiveness of the He micro-channels outside the cables and 
of the He channels network through the cable insulation is 
shown. 

II. MODEL DESCRIPTION 
As already mentioned, a 0-D model can be used thus 

neglecting the longitudinal cable dimension (and consequently 
heat conduction in this direction), the details of the He flow 
and the current distribution phenomena. Moreover, the strands 
in the cable cross-section are lumped into a single thermal 
component characterized by uniform temperature and 
homogenized thermal properties. A companion paper [8] 
demonstrated the consistency of this approach which is 
appropriate when considering heating sources distributed 
across the whole cable cross-section. 

The goal of the present work is to obtain the stability 
margin defined as the maximum energy per unit volume of 
cable that can be tolerated still leading to a recovery in the 
specific operating conditions (temperature, current and field) 
and perturbation spectrum considered.  

The thermal network in the cable cross-section is 
constituted by the strands, the He content inside the cable, the 
insulation wrapped around the cable and the external 
superfluid He bath at the constant temperature Tb = 1.9 K (see 
Fig. 1). The first three components are all thermally coupled, 
as in the original 0-D model [9]. In addition, heat exchange 
between the cable insulation and the external bath and 
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between the He fraction in the cable and the external bath (by 
He II contained inside the insulation) is allowed.   

     This thermal network is described by a system of 
ordinary differential equations based on a local balance of 
energy: 

 
                                                                                            (1) 
 
 
 
 
 

 
where the subscripts refer to the strands (s), He fraction in the 
cable (h), insulation (i) and external He bath (b). The left hand 
side of (1) contains the heat capacity of each element, where A 
is its cross-section, ρ its density, C its specific heat at constant 
pressure and T its temperature, which is considered uniform 
over the component cross-section. The right hand side of (1) 
contains the external heat perturbation extq' , the Joule heat 

Jouleq'  and the heat exchanged between all the components at 
their mutual interface. The latter is expressed in terms of 
contact (or wetted) perimeters p and surface heat transfer 
coefficients h. As regards the heat transfer coefficients, the 
section III is devoted to the description of the hs,h between 
strands and He inside the cable. For the definition of the other 
h’s, the following expressions have been used: 
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where the empirical definitions hi = 2Ki/ti and hs = 1000 
W/m2K define the thermal contact of strands and insulation 
[9], while 1/hb is the Kapitza resistance between the insulation 
and the external bath. Ki is the insulation thermal conductivity 
and ti is its thickness. The term QHeII in the (1) allows taking 
into account the thermal coupling between the He inside the 
cable and the external bath through the complicated He 
channels network between the insulation layers and through 
the insulation porosity. As in [10], the heat flux in Gorter-
Mellink regime QHeII is modeled defining an equivalent 
channel in terms of heat transport property and assuming that 
He II heat transfer in the channels and conduction in the 
insulation are independent:  
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where the cross-section A and the length L of the equivalent 
channel mentioned above define the geometrical group G = 
(A/L1/3); the normalization to the heat transfer surface At of the 
experimental apparatus in [10] is required, and f(T) is the 
superfluid thermal conductivity. 

     We make the hypothesis that He inside the cable can 
escape the cable interstices, so that the pressure remains close 
to its initial value of 1.3 bar, and the density can be obtained 
using the state equation ρ(p,T). 

A more complete model should also take into account the 
He flow in longitudinal and radial direction to evaluate the 
increase of pressure due to the temperature increase, and 

should allow having supercritical instead of boiling He 
whether the critical pressure of 2.3 bar is exceeded. 

     An important feature of this model is to link the transient 
to the steady state regime, where the stability does not depend 
anymore on the enthalpy of the components but only on the 
heat transfer path between the strands and the reservoir. 
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Fig. 1.  The thermal network implemented in the model. 

III. HEAT TRANSFER TO HELIUM 
     The theoretical evaluation of the heat transfer coefficient 
between the strands and the He filling the interstices among 
them represents a complex task. It depends on several 
parameters, which are often unknown and difficult to measure. 
     The model adopted in this study consists of the 
composition of different terms related to the different He 
phases, as summarized below:      
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     At the beginning of the thermal transient the surface 
temperature of the strands Ts is below the lambda temperature 
Tλ, and the heat exchange with He II is limited by the Kapitza 
resistance at the interface between the He and the strands. The 
Kapitza heat transfer coefficient can be approximated by: 

( )( ) ,  22
hshsK TTTTh ++= σ      (5) 

where the constant σ depends on the nature and surface state 
of the strands and is taken equal to 200 W/m2·K4. 
     When all the He surrounding the strands reaches the Tλ, the 
He I phase starts and temperature gradients are established in 
the He bulk. Under a sustained heating, the boundary between 
the He I and He II, the so-called λ-front, starts propagating 
while the He I phase grows. At this point, a thermal boundary 
layer forms at the strands-He interface. The temperature 
profile in the boundary layer can be approximated by a heat 
diffusion process in a semi-infinite body (the He) due to a heat 
flux step at the surface. The equivalent heat transfer 
coefficient is given by [7]: 
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where Kh is the thermal conductivity of He and ∆t = t - tλ 
where tλ is the time at which the transition into He I starts. 
After the boundary layer is fully developed, the heat transfer 
mechanism is driven by a steady state heat transfer coefficient, 
which has been estimate to be hss = 50 W/m2·K after 
evaluation of the corresponding minimum Nu number. The 
transition from the transient to the steady state heat transfer in 
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the boundary layer takes place when the temperature in the 
boundary layer reaches the steady state, linear profile. In our 
case we have approximated this transition following one of the 
two approaches proposed by Arp [11]:  
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     Once the saturation temperature TSat is reached, the He 
enters the nucleate boiling phase, described by a Kapitza heat 
transfer coefficient hnucl.boil as defined in [12, 13]:  
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where the parameters β and m assume the values of 
242 W/m2·Km and 2.8 respectively, which allow the best fit of 
the experimental results in [13].  
     The nucleate boiling phase would last indefinitely long if 
the heat flux towards He does not exceed the critical heat flux, 
or the surface superheat does not exceed a given threshold 
∆T*. If one of these thresholds is overcome the nucleate 
boiling phase cannot evacuate anymore heat without forming a 
film boiling [12], so energy starts accumulating into the He. 
This energy transferred to He Efilm is integrated since the time 
t0* at which Ts equals TSat + ∆T*, and compared with the 
total energy flux Elim needed to form film boiling [13]: 

,)( *
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where ton is the onset time of film boiling, α = 720 J/m2sn and 
n = 0.6. When Efilm equals Elim the transition to film boiling 
occurs and consequently the heat transfer coefficient drops to 
its film boiling value hfilm. It is taken equal to a constant value 
of 250 W/m2·K, according to the most of the literature [4-6, 
12-14]. This energetic criterion also takes into account the 
case of variable heat fluxes, and the very good agreement 
obtained with experimental results [13] confirms its reliability. 
This criterion, developed for a He bath, is adapted to the case 
of narrow channels considering the measured reduction of 
critical heat flux with reducing the channel width [14]. This 
leads to a reduction of ∆T*, that for our case is set to 0.4 K.  
     It is relevant to notice that the film thickness increases with 
the strands temperature. Unlike the case of a bath, in which the 
film always acts as a thermal barrier between the strands and a 
liquid He reservoir, in narrow channels this is the case as long 
as the film thickness is smaller than the channel width [15]. 
Since the whole He in the channel is vaporised (Egas= Elat <=> 
film thickness equal to the channel width), the worsening of 
the heat transfer observed in the quoted experimental work is 
taken into account allowing transition to a totally gaseous 
phase. This is described by a constant heat transfer coefficient 
hgas of ~ 70 W/m2·K, as extrapolated from experiments 
performed in similar geometric conditions [14, 16].     
     It is worth noting that during the phase transition (nucleate 
and film boiling) the He temperature is kept constant, whereas 
it can vary in the other phases. This feature, together with the 
definition of a hgas lower than hfilm, contributes to decrease the 
heat exchange towards He during the gaseous phase. 
     The heat transfer model implemented in this study is 
irreversible, in the sense that no recovery to a previous He 
phase is allowed. This choice is conservative, but the impact 
of a more realistic reversible model is being investigated. 

     Due to space limitations, the heat transfer model will be 
described in detail in a following, dedicated publication.  

TABLE I. MAIN OPERATING PARAMETERS OF THE LHC 
CABLES WORKING AT 1.9 K. 

  Cable 1 
(MB) 

Cable 2 
(MB) 

Cable 3 
(MQ) 

Cable 4 
(MQM) 

Strand diameter (mm) 1.065 0.825 0.825 0.48 
Number of strands  28 36 36 36 
r = Cu / Nb-Ti 1.65 1.95 1.95 1.75 
Cross-sections:    Cu (mm2) 15.871 13.203 13.203 4.229 

Nb-Ti (mm2) 9.618 6.771 6.771 2.417 
He (mm2) 2.005 1.494 1.627 0.429 

Insulation (Polyimide)   (mm2) 5.460 5.327 4.510 1.885 
Radial / Azimuthal  
insulation thickness (mm) 0.15 / 

0.12 
0.15 / 
0.13 

0.13 / 
0.11 

0.08 / 
0.08 

Nominal current (A) 11850 11850 11870 5390 
Peak field @ 
nominal current (T) 8.58 7.41 6.85 6.3 

Injection current (A) 761.78 761.78 763.07 346.5 
Ultimate current (A) 12840 12840 12810 5820 
Ps,h  (mm) 23.42 23.33 23.33 13.57 
Ps,i  (mm) 27.2 26.53 26.53 15.42 
Pi,h  (mm) 6.8 6.63 6.63 3.86 
Pi,b (conservative, see IV.C)     (mm) 2.6 0.44 0.43 0 

IV. RESULTS 
The stability margin of the LHC cables working at 1.9 K 

have been estimated for different heating times, ranging from 
100 µs up to 1 s. The field versus current transfer function 
used for the calculation is relative to the cable in the peak field 
region of the magnet cross section. It is convenient to 
approach the discussion of the results starting with the 
estimation of the impact of the He transfer model and of the 
cooling surface, to better understand the overall mechanisms 
underlying the stability of the system. 

 
Fig. 2.  Stability margin of cable 1 at nominal current and peak field as a 
function of heating time. Three different heat transfer models (between the 
strands and the He fraction in the cable) have been considered. Also the 
enthalpy of the cable components is reported. (For these simulations a 
different insulation than in the systematic calculations has been used). 

A. Impact of the Heat Transfer Model 
Several heat transfer coefficients have been introduced 

which affect the system at different times of its evolution. The 
technique used to estimate their impact on the final results is 
presented in Fig. 2 where the stability margin is calculated as a 
function of the heating time for different heat transfer models. 
The inner layer cable of the main dipoles (cable 1 in Table I) 
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is considered. The comparison with the enthalpy reserve 
(between Tb and the current sharing temperature) of both the 
dry cable (without He) and the wet cable is also shown. The 
results using only the Kapitza heat transfer coefficient are by 
far the most optimistic. This simplified and unrealistic model 
compared with the final model nevertheless highlights that the 
Kapitza regime dominates up to 1 ms time scale. For longer 
pulses the Tλ is reached and the limitations in the heat transfer 
due to the presence of He I (and/or gas phase) become 
important. This is true up to 100 ms pulse duration, when the 
heat transfer through the insulation becomes effective and the 
two curves become again identical. At this current regime 
(about 50% of the critical current) the impact of the He phase 
transition is limited between these time scales, 1 and 100 ms. 

The value of the enthalpy of the dry cable gives the lower 
limit of the stability margin. It can be demonstrated that the 
actual value of the stability margin is always higher than this 
limit, even for very short pulse. This is due to the time 
constant associated with the “decision time”, i.e. the time the 
system waits before “deciding” to quench or not. The 
difference between these values can be very small as in the 
case of high current regime because the “decision time” 
becomes very short. On the contrary the value of the enthalpy 
of the wet cable is not an upper limit for the system. The total 
enthalpy of the solid and liquid can be exceeded for long 
enough pulses. This is due to the presence of an external 
reservoir, the super-fluid He bath outside the insulation. In fact 
in case this term and the boiling phases are suppressed, as 
presented in the third curve of Fig. 2, the value of the stability 
margin cannot exceed the enthalpy of the wet cable. 

 
Fig. 3.  The stability margin and the quench power of cable 1 are estimated for 
different heating times. The power decreases for higher heating time and gets 
flat, while it is reaching asymptotically the steady state heat transfer regime. 
(A different insulation than in the systematic calculations has been used).  
 

Fig. 3 shows the stability margin calculated for 11850A 
together with its associated quench power (minimum energy 
causing a quench divided by the heating time): for long 
heating times the power needed to quench the cable decreases 
and reaches asymptotically the steady state value. 

From the above considerations it is possible to understand 
the different behavior observed at low current regimes (< 35% 
of the critical current). Since the “decision time” is noticeably 
longer, the stability margin is much higher than at high 
currents, and it is independent on the heating time until this 
last one does not exceed the “decision time”. This reduces the 
impact of the heat transfer model for such heating times. 

B. Impact of the Cooling Surface 
     The influence of the He micro-channels located between 
the cables in the coil and of the He channels network through 
the cable insulation have been preliminary investigated. In 
fact, their actual impact is unknown, so that we finally ignore 
the effectiveness of these two heat transfer mechanisms. The 
parametric study presented in Fig. 4 points out the importance 
of the actual pi,b. The unrealistic value of 35 mm, 
corresponding to an entirely wetted insulation, allows a better 
stability than in the case of not-effective µ-channels (pi,b = 2.6 
mm) . The case of effective micro-channels (pi,b = 8.2 mm) is 
in between. It is clear that this influence becomes very 
important for long perturbation times. On the other hand, the 
actual size of the He channels network (represented by G) 
starts playing an appreciable role for values above 10-5m5/3. 
     In the following calculations a conservative case has been 
considered, where pi,b = 2.6 mm and G = 0 m5/3. 

 
Fig. 4.  Stability margin of cable 1 at nominal current and peak field as a 
function of heating time. Different pi,b and sizes of the He channels network 
through the insulation have been considered.  

 

Fig. 5.  Stability margin of cable 1 for the pick field region of the MB 
magnet as a function of heating time and for different current levels. 

C. Systematic Calculation of the Stability Margins 
All the cables presented in Table I have been considered for 

the systematic calculation of the stability margin of the LHC 
cables. Besides cable 1, the outer layer cable of the main 
dipoles (cable 2), the cable of the main quadrupoles (cable 3) 
and the cable of the insertion quadrupoles MQM (cable 4) are 
also considered. The results for cable 1 are presented in Fig. 5. 
For short heating time the sensitivity of the stability margin to 



1N09 5

the pulse duration is relevant only for high current regime, 
while for lower current values the effect becomes smaller, as 
previously explained. The well pronounced knee at 12840 A 
(around 100 ms) shifts at lower currents and becomes less 
relevant while current decreases and almost disappears below 
8 kA. The local minimum observed for low currents is due to 
the actual model used for the heat transfer coefficient in 
boundary layer. This can be considered as a possible artifact of 
such simplified approach while the more general one mitigates 
this effect and its implementation is in progress.  

 
Fig. 6.  The stability margin of cable 1 is presented as a function of magnetic 
field and for several current levels. The magnetic field ranges between 0.5T 
and the peak field for a given current. 
 

The stability margin for a given cable has been estimated as a 
function of the heating time, current and magnetic field. An 
example is presented in Fig. 6 for cable 1 for a heating time of 
1 ms. With such information it is easy to interpolate the results 
at any field for any cable in the magnet cross section. Indeed, 
even if the most critical cable is the one at the peak magnetic 
field located in the upper pole, other region of the magnet like 
for instance the mid-plane cables of the dipoles can be 
probably more affected by beam loss heat deposition. 

 
Fig. 7.  Stability margin of all the cables presented in Table I at their nominal 
current and peak field as a function of heating time. 
 

     Fig. 7 presents the stability margin of the above mentioned 
cables at their nominal operating conditions as a function of 
the heating time. It shows a better stability of the quadrupole 
cables compared to the dipole ones. 
     Calculations on the LHC SC cables working at 4.5 K are 
ongoing and will be soon available, together with the detailed 
calculations relative to all cables working at 1.9 K in all the 
possible operating conditions. 

V. CONCLUSION 
A 0-D thermal model has been built to study the stability of 

the LHC SC magnets, taking into account all relevant He 
phases discussed in the literature and introducing a new way 
to deal with the gaseous phase in narrow channels. 

A complete scan of the stability margins of the LHC cables 
working at 1.9 K has been obtained, with respect to several 
parameters. It will allow setting the BLM system, thus being 
crucial for the correct exploitation of the LHC.  

Improvements of the heat transfer model are ongoing, 
together with the increase of the complexity of the 0-D 
approach. Indeed, the great number of simulations needed to 
get a comprehensive picture of the stability of the LHC cables 
requires a numerical model of low computational cost, but a 
more accurate multi-strand approach with periodical boundary 
conditions would better describe the internal structure of the 
cable and the predicted shape of a beam loss energy deposit. 

Stability measurements for steady state energy deposition 
have been performed on few LHC magnets. Means to 
experimentally validate the consequences of transient energy 
deposition are under study.  
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