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Outline

*On going work:
— Beam loss GEANT simulations
— Detector selection
— Getting ready for Oct. run...



Full GEANT Simulation of CTF3 drive beam
Linac is our Ultimate goal... (Matthew Wood)

Simulated EM Shower:
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. More details in a minute....

A M

10 cm



Assumptions made for studies
and for normalizing results

Linac beam has a series of pulses with a length
of 1.54us & 3.5 Amps.

Per mil loss of a single pulse 2> 3.36 x 1019
electrons

Initial energy 24 MeV:
— Simulated losses at 24, 50, and 150 MeV

Single point at a fixed angle of 30 mrad
Minimum energy cuts for e @100 keV

&y @ 1 MeV



We are in an energy range where there is only a small

dependence between the flux and exit angle
(multiple scattering dominates)

Elecwron/Positron and Pholon FAlux versus Angle (D = 100 cn E =24 MeV)

- El=cbon'Poabon Auc ot R= 15amn
o el Fhokon Flue ot R = 15 cm
E 10 — Elecbon'Poabon Aus ot R = 30 am
N-.':’_ = Photon Flue ot R =30 o
'_c = e Elaciron'Pomitron Awe ot R = 80 amn
- B ———#—— Photon Flux ot R =60 cm
g - O O o Lo ") o O O o Q
(T
1 —
[ A a A A A A A A A =
L & ' L
4 - i ; 4 i
10" |— f + 4 ?
M | | | g | o | I l l o s v o 0 3 4 0 s | .
10 20 30 40 50 60 T 80 90 100

Angle (mrad)



Example:Distribution of particles

(e- interacted on the right side of the horizontal plane)

e-let

Figure S Shower profiles for Electrons/ Positrons and Photons at a beam energy of 24 hi=sW,
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Figure 6 Shower profiles for Electrons,/Positrons and Photons at a beam energy of 50 hieWV.



Summary of flux at 100 cm from
the interaction for 24 MeV e-




Summary of flux at 100 cm from
the interaction for 50 MeV e-
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Summary of flux at 100 cm from
the interaction for 150 MeV e-




Can we tell where the interaction occur?
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CTF3 beam loss detection system

- Initial goal : Protection of major components of the
accelerator (accelerating structures, RF deflectors,
collimator ,...)

- Nanosecond time response is required for the feedback system

- From simulations, assuming 1%o. beam loss induces a
large flux of electrons and photons of 10!2 (/cm?/s)

- High sensitivity is not required

* But need to be radiation hard (lifetime ?)

- From simulations, we see that induced showers are
transversely position dependant

* Possibility to localize spatially where the losses
occurs(beam loss position monitor)



CTF3 beam loss detection system

Linac section

Accelerating structures

* Aluminum Cathode Electron Multiplier

* Other radiation hard detector :
- Secondary emission monitor

ﬁassical detector based on a Photo multiplier )
tube (PMT) coupled to a :
- Plastic scintillator

L) - Plastic fiber
€ s » Scintillation in gas (xe is fast few ns) Longer life time
&Cher'enkov in gas 'Radiation har'y




Radiation Hard Ionization Chambers /
Secondary Emission Monitors

Work done in collaboration with:
‘FNAL
*Richardson Electronics



NEW Radiation Hard lonization Chambers /
Secondary Emission monitors

Velasco, Dabrowsky, Szleper

*Invested 2 years — partnersh1p w1th ﬁdustry —Rlchardson electronlcs
& FINAL (help with design challenges) Richardson I

Electronics

Enginearad Solutions

*Reproducible radiation hard, high intensity flux, excellent tolerances

*Gas sealed... or in high vacuum



Motivation & Preview Work done

*Produced Chambers than can be used in
High Rate Environment like those of next

generation of proton drivers

[ |
Design Testing
[
[ [ ]
Glass Chamber ATF Radiation Calibration Booster
(BNL) Facility (FNAL) (FNAL)
Electron Source Photon Emission Proton Source
(e8 - €9) 424 Rl (1e11-1e12)
Ceramic Chambers
Design1,2,3,4




Radiation Physics Calibration Facility

(RPCF,FNAL)

*Two new Cs!37 sources:

eMax:1600 Rad/Hr




Design studies: Round Edges distort signals
such that we get a slope in plateau
=» Flat surface between signal and guard ring

selected instead.
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Chamber Characterization show no
radiation damage after XX protons

Current (-pA)

Plateau of SIC, Argon Filled, Design 2, Tested at
the Radiation Calibration Facility (425R/r Cs-137
Photon Field)
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Tests at ATF (BNL) low energy electron
beam No saturation below 8*10°9/p/cm"2

|- No Saturation!

After oélll cuts
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Test Setup (@ Booster
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Booster (FNAL) Halo

High intensity ~ 1€9 proton source
1.5 us per spill ... halo sees 1/100 of total beam

ONLINE OFFLINE

GxPB 1: Lumberjack Plot B:TORRDF
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Booster (FNAL)

Normailised Signal
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Design 2, Proton Beam (1.9e11) at Booster (FNAL)
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Design 2, Proton Beam (1.8e11) in Booster (FMAL)
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Booster (FNAL) — Intensity Scan

| |
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Secondary Emission Monitor—

SIC chamber in vacuum

*Getter - Place a strip of bartum under the collector and
activate it at about 1000 degree C.

Jon Bombardment - Apply a voltage across the electrodes
while pumping to reduce atmosphere of H,.

—Richardson used this process on vacuum tubes to 108
torr




What do we know about

scintillators and fibers...

8m
< >
s )
"I'I. C 5 fs’ —
' \/ to optical

connector
.0 ctm x 4.1 cm extruded polystyrene scintillator



Minos
example

*We know how to machine in
different shapes

Light response as function of
groove depth

Electronics for the fiber...
Hamamatsu

*Eftc...

—> Several options...more
information by the oct. workshop




CTF3 beam loss detection system : October 2003

@ @ | } 5] [Tl |

(W {

/ Benchmarking Geant simulations

' Measuring the induced showers for a controlled
and measured beam loss

Well equipped region with beam Testing different equipments
position and beam profile monitors

&

* Possibility to use four detectors

- Beam loss detectors can be easily
moved from one location to the other /

- Scintillators + PMT

- Scintillating fiber + PMT




Conclusion: Work on Beam
Loss System is just starting...

 Still not clear if:
— We need total flux only, and/or (integrated over spill)
— Spatial information (segmentation)
— Information within the spill (flux vs time)

It all depends on what their final use will be:
— Beam Interlock
— Feedback System
— Beam Dynamics studies
— Etc.

=» Time will tell...
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