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IFM, Linköping University
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Abstract

At the particle physics laboratory CERN, the largest accelerator ever, the Large
Hadron Collider (LHC), is under construction. In the LHC ultra relativistic parti-
cles, mainly protons but also lead ions, will be brought into collision. One problem
that arises in the operation is that colliding ion beams in the machine have a very
large cross section for electromagnetic interactions, in particular Bound Free Pair
Production (BFPP). An electron-positron pair is created by the electromagnetic
field between two colliding particles and the electron is created in a bound state of
one of the ions. Because of this reaction the ion changes its charge and therefore
leaves the wanted trajectory and crashes in a superconducting magnet, depositing
heat.

The impact of the wrongly charged ions on the inside of the vacuum pipe was
simulated with the simulation program FLUKA. It was concluded that it is not
likely that enough heat is deposited in the coils of the superconducting magnet to
induce a quench, although some uncertainties exist.

A necessary safety measure that can protect against quenches due to BFPP
or other beam losses is the beam loss monitor (BLM) system, which was initially
designed for the proton beam. In this thesis, the ratio between the signal on
the BLM and the heat deposition in the coils of the superconducting magnet was
simulated for both lead ions and protons, and it was concluded that this ratio is
approximately the same. This means that the same thresholds in the beam abort
system can be used for both particle types, provided that the losses occur at the
same places.

Finally the response of the BLM system at the RHIC accelerator in Brookhaven
to copper ions undergoing BFPP was simulated and compared with experimental
data. Unfortunately the correspondence was not as good as was hoped. Several
possible error sources that could cause this discrepancy were identified.
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Chapter 1

Introduction

This Master’s Thesis investigates a possible limitation of the performance of a fu-
ture particle collider, called the Large Hadron Collider (LHC), which is currently
under construction at the physics centre CERN (European Organization for Nu-
clear Research) in Switzerland. Here high energy beams of protons and ions will
be brought into collision. At the collision point, the colliding ions might change
their charge due to a process called Bound Free Pair Production (BFPP). Because
of that, they leave their design trajectory and might damage the machine through
a quench in one of the superconducting magnets, which form the accelerator. The
first task in this thesis is to investigate how severe this effect is using computer
simulations. The second task is to simulate the performance of the beam loss
monitor system for ions in order to investigate if the planned design is sensitive
enough for detecting the beginning of a possible quench. A quench could arise due
to the BFPP process or also due to other beam losses. The last task is to simulate
the signal of the beam loss monitor system at the RHIC (Relativistic Heavy ion
Collider) accelerator in Brookhaven, USA, and compare this with real data.

The structure of this thesis is:

• Chapter 1 gives a short introduction to CERN and the Large Hadron Collider
project, and more specifically to the ion scheme that will cause the studied
effect.

• Chapter 2 describes the present problem along with some background theory
that will help in understanding it. The chapter is intended also to cover sub-
jects that could be new to someone not familiar with CERN and accelerators
and that will help give a deeper understanding of the rest of the thesis. It
is sufficient for a reader familiar with the background theory and CERN to
read Sections 2.5 and 2.7.

• Chapter 3 presents the theory behind Monte Carlo simulations in general
and the FLUKA program, which is the main tool used to study the problem.
This part is not essential for the rest of the thesis and might be omitted by
a reader familiar with the concepts.

1



2 Introduction

• Chapter 4 describes how the impact of the lost ions from the BFPP process
on the superconducting magnet was simulated. The result of the simulation
gives the power deposition in the superconductors.

• In Chapter 5, an attempt is made to quantitatively understand the level of
the power density that will make an LHC dipole magnet quench. This level
can then be compared with the results of the simulations. Here also the
results and conclusions for this problem are presented. Finally, some means
to alleviate the problem are suggested.

• Chapter 6 gives an introduction to the beam loss monitor system at LHC and
describes how it was simulated. Also the results of the simulation are pre-
sented, and conclusions are drawn about whether the present design initially
made for protons is sensitive enough also for the ion scheme.

• Chapter 7 finally, explains how the beam loss monitor system at RHIC was
simulated during operation with copper ions that undergo BFPP. The results
are compared to experimental data.

1.1 CERN

CERN, the European Organization for Nuclear Research, is the world’s largest
particle physics centre [1]. The name CERN is an abbreviation for the French
name Conseil Européen pour la Récherche Nucléaire. This name is however not
used anymore — the new name is European Organization for Nuclear Research,
but the abbreviation has remained. CERN was founded in 1954 by a collaboration
of 12 European states. It is situated close to Geneva on the border between France
and Switzerland.

At present, CERN has more than 20 member states in Europe and also a
number of observer states. The member states have certain duties and privileges
— they have to make financial contributions but can take part in the council
meetings and decision-making. Observer states are allowed to attend the meetings
but do not have the same financial duties. The research facilities constructed at
CERN are often so advanced and complex that they are too expensive for a single
country. Therefore the member states have to cooperate in order to realize this
kind of scientific research.

Today CERN has about 3000 employees, and an additional 6500 particle physi-
cists from over 500 universities in more than 80 countries do parts of their work
here.

The primary goal of CERN is to provide physicists with the necessary tools
to study the constituents of matter and the forces that hold them together. The
most important tools are the accelerators and the detectors. An accelerator is
a machine that uses electrical fields to accelerate electrically charged particles to
high energies. When highly energetic particles collide, they may annihilate and
new particles may be created from the energy set free. By colliding the accelerated
particles inside a detector, scientists can assemble data to reconstruct the collision
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Figure 1.1. Map showing the location of the CERN sites on the border between France
and Switzerland north-west of Geneva. The large circle indicates the position of the
largest accelerator at CERN, the LHC.
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with great precision. In this way it is possible to identify the components of
particles, calculate their masses, obtain information about how they interact, etc.

1.2 The accelerator complex

At present, the LHC (Large Hadron Collider), which will be the largest particle
accelerator in the world, is being constructed at CERN. The LHC should help
to clarify many mysteries in modern particle physics. In the LHC, two particle
beams will circulate in opposite directions on different trajectories. Four different
experiments will be built around the LHC, where the two beams will be brought
together inside a huge detector, in a so-called interaction point.

Two of the constructed experiments, the CMS (Compact Muon Solenoid) [2]
and ATLAS (A Toroidal LHC ApparatuS) [3], will further test the standard model
of particle physics and its possible extensions. This model has so far yielded perfect
agreement with existing experiments. The standard model introduces the genera-
tion of particle masses via the interaction with the Higgs particle, which scientists
hope to detect in the high-energetic proton collisions in the LHC. The CMS and
ATLAS experiments will also try to check theories that go beyond the standard
model — for instance, researchers also hope to find supersymmetric particles. The
goals of these two experiments are approximately the same, but different types of
detectors will be used.

The LHCb [4] experiment will study the physics of B-mesons (mesons in which
one of the constituents is a bottom quark). By measuring CP-violation in B-meson
decays, scientists hope to draw conclusions about the ratio of matter and antimat-
ter in the universe and also explain why it seems to be a very large imbalance.

The ALICE (A Large Ion Collider Experiment) [5] experiment, finally, will as
main project study lead ion collisions at ultra-high energies. The goals of this
project is to find and study Quark-Gluon plasma, which is a hadronic state of
matter that was believed to exist just a millisecond after the big bang, and Colour
Glass Condensate, which is believed to be a precursor of the Quark-Gluon plasma.

Normally quarks are locked inside bigger particles by the so called confinement
law. Quarks carry colour charges, and they have to be bound together in either
groups of three so that their colours blend to ”white” in baryons (for instance
protons and neutrons), or in pairs of quarks and anti-quarks inside mesons, where
the colours and anti-colours cancel. When energy is added, instead of separating a
quark from the others, new pairs of quarks and anti-quarks are created from this
energy and form new bound states in baryons or mesons. This pairing process
starts as soon as a quark gets separated from the other quarks that it is bound to
by more than one femtometre.

Today it is however generally believed that ”free” quarks must have existed in
the extreme conditions of the very early universe. According to theory, the universe
consisted of a very hot gas of quarks and gluons during the first 40 microseconds
after the big bang. This state of matter is the so-called Quark-Gluon plasma [5].

In order to understand more about how the confinement works and how the
universe has evolved, physicists want to create Quark-Gluon plasma in the labo-
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ratory. This could be done in high-energy collisions of heavy ions. If the energy
density is high enough, on the order of 10 GeV/fm3, the collision will pack the mat-
ter so closely together, that a single quark will see numerous other quarks within
a femtometre in all directions, so that the confinement will no longer matter.

In 2004, something that could be Quark-Gluon plasma was discovered in the
presently largest heavy ion collider in the world, RHIC [6] (Relativistic Heavy Ion
Collider, described in more detail in Chapter 7) in the USA. However, it did not
behave as expected and theorists and experimentalists could not agree whether it
really was Quark-Gluon plasma or not. It showed many unexpected properties—
for instance, it seemed to be more a liquid than a gas. These experiments gave rise
also to new theories about another kind of hadronic matter, the so-called Colour
Glass Condensate. Scientists at CERN hope that the heavy ion collisions in the
LHC, which will have much higher energy than the ones at RHIC, will permit the
study of both these new states of matter, so that their properties can be studied
with the detectors in the ALICE-experiment. Also CMS and ATLAS will study
ion collisions as secondary tasks.

The lead ions, which will be used for the experiments in the LHC, will be
accelerated up to 2.76 TeV/nucleon. Never before have heavy ions been accelerated
to such high energies and with such high intensity. The operation with lead ions
imposes however a lot of challenges of practical and technical nature, that have
to be solved before the start-up of LHC. One of the obstacles that have to be
overcome is the issue of Bound Free Pair Production, which is the main topic
discussed in this report.
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Chapter 2

Ion operation at CERN

2.1 Operation of the LHC

The accelerators at CERN form a chain of interlinked machines, as illustrated in
figure 2.1. Each machine is larger and can accelerate particles to higher energies
than the preceding one. Larger accelerators are needed in order to increase the
resolution of the studied matter, and also because the probability for rare processes
often increase with energy.

The particles that will be accelerated and brought into collision in the initial
phase of operation in the LHC are protons and Pb82+ lead ions. The particles are
first extracted from one of the sources and accelerated by one of two linear acceler-
ators, called LINACs, up to an energy of 50 MeV for protons and 4.2 MeV/nucleon
for ions. A LINAC is composed of a series of accelerating structures, which use a
time varying electric field parallel to the direction of motion of the particles.

After that, the protons are transported and injected into the Proton Syn-
chrotron Booster (PSB), and the ions to the Low Energy Ion Ring (LEIR). Both
these machines are synchrotrons. A synchrotron is a circular accelerator, where
the particles are kept on a constant orbit with bending magnets. On each lap they
also pass a radio frequency cavity with an accelerating electric field. When the
energy of the particle increases, the bending field has to be adjusted accordingly
to keep the particle on the same orbit.

The protons are ejected from PSB when they have reached an energy of 1.4
GeV and the ions from the LEIR when they have reached 72 MeV/nucleon. After
a short transport they are then injected into the Proton Synchrotron (PS). There
they are accelerated up to 26 GeV for protons and 6 GeV/nucleon for ions. In the
same way they continue through the Super Proton Synchrotron (SPS), where they
are accelerated even more. When they leave the SPS, the protons have an energy
of 450 GeV and the ions 177 GeV/nucleon. This kind of stepwise acceleration
through one machine after the other is necessary since it is very hard to accelerate
the particles from MeV to TeV with only one machine with fixed geometrical
radius. In addition, some of the intermediate accelerators deliver particles not
only to the next accelerator, but also to experiments performed at lower energies.

7



8 Ion operation at CERN

Figure 2.1. The CERN accelerator complex (not to scale). The accelerators discussed
in this section are the Linear Accelerators (LINACs), the Proton Synchrotron Booster
(PSB), the Proton Synchrotron (PS), the Super Proton Synchrotron (SPS), the Large
Electron-Positron collider (LEP) and the Large Hadron Collider (LHC). At CERN also
experiments with neutrinos (CNGS, CERN Neutrinos to Grand Sasso), electrons (CTF3,
CLIC Test Facility 3), neutrons (n-TOF, neutrons Time Of Flight) and anti-protons (AD,
Anti-proton Decelerator) are being performed.
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Because of the interlinked accelerators, it is possible to perform experiments at
CERN over a broad range of energies.

Until a few years ago electrons and positrons were transported farther from
SPS to an even more powerful accelerator, the Large Electron-Positron collider
(LEP). It was a giant circular accelerator used to accelerate and collide electrons
and positrons at a center of mass energy of 204 GeV. It was situated in a tunnel 100
m underground with a circumference of 27 km. It goes through both France and
Switzerland, as can be seen in figure 1.1. It was the largest scientific instrument
ever used. In 1991 it was decided that LEP should be replaced by the LHC. This
machine will be placed in the same tunnel that contained LEP, but as mentioned
earlier it will be used to accelerate and collide protons and heavy ions instead.
With this machine, it will be possible to reach much higher particle energies (7
TeV for protons and 2.76 TeV/nucleon for lead ions), which may lead to new
discoveries and give answers to some of the still unsolved mysteries in particle
physics. The reason why protons and ions can reach a higher energy than electrons
in a machine with the same geometrical radius is that they emit less synchrotron
radiation due to their larger mass. On the other hand, the protons and ions are
not point-like. The collisions will be between single quarks or gluons, which means
that the effective energy in the collision will be less than the energy of the particles,
and also that the collisions in the LHC will be much more complex to study. LEP
was shut down in November 2000 in order to start the installation of the LHC.
The LHC is due to be switched on in 2007.

In figure 2.2 a more schematic layout of the experiments and facilities under-
ground can be seen.

In the tunnel, magnetic elements will be placed, surrounding the beam. The
magnets in the LHC are mainly dipoles, which produce an almost homogenous
vertical field, orthogonal to the propagation direction, in order to bend the trajec-
tories of the particles and give them a correct radius of curvature, and quadrupoles,
which are used to focus and defocus the beam. The layout of the magnets in the
tunnel is called the lattice. The two beams themselves will travel inside the mag-
nets in small pipes with vacuum inside. The wall of these pipes is called beam
screen. Its primary purpose is to absorb most of the synchrotron radiation emitted
by the protons. A computer generated image of how it will look in the tunnel is
shown in figure 2.3.

In the machine, the ions will be grouped by the radio frequency field into 592
bunches, which are a sort of packets of particles, separated in time, that have the
approximate same momenta and space coordinates. At the interaction points, the
beams with opposite directions will be brought together in a collision that will be
observed by the detectors. The region of most interest in this report is the one
around the ALICE experiment, called Interaction Point 2 (IP2).

2.2 LHC Dipole Magnets

The LHC dipoles will be described in more detail, since a dipole magnet is the main
object for the simulations later on in this report. A drawing of the transverse cross
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Figure 2.2. Schematic overview of the LHC. ARC stays for the regular LHC cell com-
posed by 3 dipoles and a quadrupole. DS is the dispersion suppressor region, where the
lattice has two dipoles for every quadrupole (R for right of the interaction point and L
left with respect to beam 1 which is in blue). LSS stands for Long Straight Section,
where the experiments are located and the beam collisions or other special sections are
foreseen.



2.2 LHC Dipole Magnets 11

Figure 2.3. Computer generated picture of the LHC tunnel. The cylindrical construc-
tion on the left is the beamline.

section of a dipole magnet is shown in figure 2.4. An LHC dipole is 14.6 metres long
and there will be 1232 dipoles placed along the tunnel to bend the beam and give
it the correct radius of curvature. Since the charged particles are ultra-relativistic,
a very strong vertical field with a magnitude of 8.33 T is needed in the beampipe.
This is impossible to achieve with a traditional magnet that is limited by iron
saturation and therefore superconducting magnets are used. Superconductivity as
a physical phenomena will be described in more detail in Section 2.3.

The outermost layer of the dipole is called the cryostat or the vacuum vessel
and serves as a heat insulation and vacuum barrier. It has a diameter of 91.4 cm.
The next layer inside the cryostat is the thermal shield. It is there for insulation,
since the inner parts of the magnet, called the cold mass, need to be cooled down to
a very low temperature, 1.9 K, in order to keep the cables in their superconducting
state. The air in the tunnel outside the vacuum vessel is at room temperature. The
massive block inside the thermal shield is the yoke made of iron, which closes the
magnetic field lines. Around the two iron beampipes, that are filled with vacuum
and have an inner diameter of 5.6 cm, the superconducting coils are placed in order
to create the strong field inside the pipe. This is illustrated in figure 2.5. They are
kept in place by a steel collar under high pressure. Around each beam pipe there
are two coils, one outer and one inner, which can be seen in figure 2.4. Each coil
consists of several windings of cable. The cable itself consists of wires, so-called
strands, with channels for helium between them, surrounded by an insulator. The
strands are the actual current carriers. A strand has a diameter of roughly 1 mm
and is made of around 8000 filaments of superconducting NbTi embedded in a
copper matrix. The volume ratio of copper to superconductor is about 1.65. The
composition of the cable is illustrated in figure 2.6.

In the superconducting state, all the current goes through the superconductor
and not through the copper. The copper is however needed for several reasons.
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Figure 2.4. The transverse cross section of an LHC dipole magnet.
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Figure 2.5. Schematic view of the coils and how they lie around the beampipes. Also
the directions of the two beams (red arrows), the currents (green arrows) and the the
magnetic field lines (yellow arrows) are shown.

Figure 2.6. A schematic view of the a strand inside the LHC dipole cable (left) and the
transverse cross section of a superconducting cable (right). The figure is taken from [7].
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Figure 2.7. The phase diagram of helium with pressure on the y-axis and temperature
on the x-axis. The superfluid is called He II and the normal fluid He I. The transition
between these two phases takes place at the so called λ- line. The figure is taken from [8].

Firstly, NbTi itself is a quite brittle material, and the coils are under high pressure
inside the collar. Therefore the copper is necessary in order to make the structure
more robust. Also, if a part of the cable were to make a transition to the normal
conducting state, the electrical resistance of NbTi would be very high, which means
that a lot of heat would evolve. However, if the copper is present, the current will
go through the copper part instead since it has less resistance, and less heat will
develop. A third reason for its presence is that the copper improves the heat
conductivity of the cable.

The coils are cooled down to 1.9 K by a constant flow of superfluid helium.
Superfluidity is another state of aggregation that the helium can reach at temper-
atures below the so called lambda line, which can be seen in figure 2.7, where a
phase diagram for helium is shown. Normally, liquid helium at low temperature
is described by a two-fluid model, where one part is superfluid and the other one
is normal. In the superfluid part, the viscosity and the entropy equal zero, and
the heat conductivity is infinite. A zero viscosity means that the superfluid flows
without resistance. At atmospheric pressure, the transition between normal fluid
and superfluid helium takes place at 2.1 K. A superfluid has some very peculiar
properties. A property that is very useful for the cooling of superconducting mag-
nets, is that it can flow through very small capillaries of the order of 10−4 cm
without resistance. Thus the helium can flow through the tiny channels inside the
cable, which is a very efficient way of cooling the superconductors. Also a thicker
pipe with flowing helium will pass through the yoke.
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2.3 Superconductivity and quenching

Superconductivity as a phenomenon was discovered in 1911 by the Dutch physicist
Kammeringh Onnes, when he noticed that the resistance of a mercury sample
suddenly dropped to an immeasurably small value below a certain temperature.
Superconductivity cannot be explained within a framework of classical physics and
was not fully understood until the advent of the Bardeen, Cooper and Schrieffer
theory (BCS) in 1957. This theory revolutionized our understanding in the area [8,
9].

According to BCS theory, a metal can transport an electrical current with
practically no resistance, when it is in the superconducting state. This current,
called supercurrent, is not transported by conduction electrons as in a normal
conductor, but instead by pairs of electrons bound to each other, so-called Cooper
pairs. A material is superconducting when the state of the material is under a
three-dimensional critical surface in the space spanned by the temperature, the
magnetic field in the sample and the current density. This is illustrated in fig-
ure 2.8, where the critical surface of NbTi is shown [8]. As can be seen in the
figure, the material is only in its superconducting state at very low temperatures.
The transition from the superconducting to the normal state is called a quench.
There are several possible ways to make this transition. For instance, the magnetic
field and current can be kept constant and the temperature gradually increased.
The temperature at which the quench occurs is called the critical temperature.
This temperature is different for different values of the magnetic field and the cur-
rent density. If these quantities have large values, the starting point is somewhere
in the top of the space shown in figure 2.8 and thus the distance out to the surface
along a line parallel to the temperature axis is a lot smaller than if the starting
point had been somewhere in the base, meaning a smaller increase in temperature
will induce a quench. Analogously, one can define a critical magnetic field and a
critical current.

If a quench occurs in a small volume of a superconductor, for instance through
localized external heating, this volume will be normal conducting. And if there
is a current flowing through the conductor, it will feel a resistance in this small
normal conducting volume. This will cause Joule heating, which heats the clos-
est surroundings of the conductor; maybe so much that they also become normal
conducting. And as the normal conducting zone grows, more and more heat is de-
veloped in the resistive parts, so larger and larger parts of the superconductor will
quench. In the end of such a process the whole conductor is normal conducting.
So even if only a very small zone in a superconductor makes the transition, the
quench will rapidly propagate. The smallest zone that can cause the whole con-
ductor to quench is called the minimum propagating zone. This zone is normally
on the order of a few micrometers [10].

There are two types of superconductors. The ones belonging to type one have a
very rapid transition between the superconducting and normal conducting states.
If, for instance, a homogenous magnetic field is increased until a quench occurs,
the whole material will make the transition to the normal conducting state at
once. For a type two superconductor this is not the case. At some value of the
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Figure 2.8. The critical surface of NbTi (the material used in the coils of the LHC dipole
magnets). When the point with coordinates (temperature, magnetic field and current
density) is below the surface, the material becomes superconducting. The surface has a
slightly different shape for different materials but has always a qualitatively similar form,
so that if the material is in the superconducting state below the surface and any of the
three coordinates is increased, a quench will occur at some point. Also the load line for
LHC is marked. However, the LHC cables have a slightly lower temperature margin than
pure NbTi. Taken from [8].
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B-field, called the first critical field, small regions will become normal conducting,
and as the field is increased, more and more regions will make the transition until
in the end the whole sample is back in the normal state at the second critical field.
A magnetic field can not exist inside the bulk of a type one superconductor —
the field lines are passing around it (the so called Meissner-Ochsenfeldt effect [9]).
The current passing through a type one superconductor is a surface current, since
also no currents can exist in the bulk. This is exactly the same for a type two
superconductor below the first critical field. Between the first and second critical
field however, in the so-called Meissner phase, parts of the material are super-
conducting while other parts are normal conducting. Here a magnetic flux can
penetrate the bulk of the sample in the normal conducting regions, and currents
are allowed around these regions. A type two superconductor is more suitable as
a magnet than a type one. Typically a type one superconductor has a critical
temperature of just a few Kelvin, which makes them inconvenient to use because
of the needed cooling systems. Type two superconductors often have a higher
critical temperature.

Superconductors are very suitable to use in magnets, where strong magnetic
fields are needed. Since the superconductors can carry a very high current density
with almost no resistance, only a very small power input is needed. It is also
possible to achieve higher field strengths with a superconducting magnet, since a
normal magnet will be saturated at some point. The magnets used in the LHC
ring are superconducting, as mentioned in Section 2.1. The magnetic field of a
dipole magnet in the LHC at nominal beam energy is 8.33 T. A disadvantage of
superconducting magnets is that they require a very low operational temperature.
In the case of LHC dipoles, the operating temperature is at 1.9 K and the quench
limit at somewhere above 3.3 K at a magnetic field of 8.33 T. This requires a very
powerful cooling system, which in LHC will be based on liquid helium flowing
around the coils as explained in Section 2.1.

In the present problem with BFPP, which will be explained in Section 2.5, the
ultimate goal is to see whether the superconducting dipole magnet quenches or
not due to the temperature rise caused by the secondary ion beam. A quench
in a magnet destroys the field, which in turn could make the whole beam leave
its trajectory and be lost into other magnets and quench them as well. There
exists a protection system that will dump the beam before it is lost in the ring
and fire so-called quench heaters, but in a worst-case scenario the magnets could
actually be physically damaged if they are hit directly by the beam. Replacing
a broken magnet in the tunnel takes a lot of time — it is estimated to take one
month [11]. This is not only very expensive but also delays the time schedule for
the experiments. Even if no physical damage is done, a lot of valuable experiment
time is lost, since the machine must be restarted and filled again with new bunches
of particles. In the case of ions, this could take several hours. Therefore it is very
important to avoid magnet quenches in the accelerator.
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2.4 Cross sections and luminosity

When the particle beams collide, there are different parameters that determine
which and how many reactions take place. For a given reaction, the number of
events per time unit R in an accelerator is given by

R = σ · L (2.1)

where σ is the total cross section for the reaction and L is the luminosity of the
collider.

The total cross section comes from the physics and is connected to the probabil-
ity for a single reaction. Classically it can be described as the area of a scattering
object that an incoming particle has to hit in order to be scattered. There exists
also a differential cross section called dσ/dΩ, which is dependent on the solid an-
gle. It represents in classical physics the area that a particle has to hit to scatter
in a certain solid angle dΩ. Quantum mechanically, the cross section still has the
dimension of an area but does not represent a physical area in the same way as
in classical physics. Here the differential cross section is calculated by first solving
the Schrödinger equation (or the Dirac equation in the relativistic case) for the
incoming particle in the scattering potential of the other one, and then calculating
the ratio of the probability current passing through the solid angle dΩ and the
incident probability current density. Normally in particle physics, cross sections
are given in the unit barn, where 1 barn = 10−28 m2.

The luminosity L is a machine parameter that tells something about how fre-
quently the circulating particles will have an opportunity to interact. It can also
be seen as a measure of the quality of an accelerator. It is proportional to the
square of the number of ions N2

i in every bunch, the number of bunches Nb circu-
lating in the machine and the revolution frequency f , and inversely proportional
to the spread σx and σy in the transverse coordinates of the bunches [12]:

L ∝
N2

i · Nb · f

σx · σy

(2.2)

For the ion beam in the LHC, the luminosity is L = 1027 cm−2.

2.5 Bound Free Pair Production (BFPP)

When the ultra relativistic ion beams collide in the LHC, a lot of different physi-
cal processes take place. Apart from the wanted nuclear interactions that will be
studied by the experiments, there are also a number of mostly unwanted interac-
tions that can influence and limit the performance of the accelerator in different
ways. If the collisions are peripheral, that is, the lead ions do not collide head
on but pass each other by close enough to significantly influence each other, the
electromagnetic interactions dominate.

The most common electromagnetic processes that can take place at the interac-
tion points are Rutherford scattering and Free Pair Production [13]. In Rutherford
scattering, the ions elastically exchange a virtual photon as they pass each other
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Figure 2.9. The Feynman diagram for the BFPP process. The charges of the two
interacting ions are called Z1 and Z2. In the case of LHC, Z1 = Z2 = 82 for the lead
ions. The diagram is taken from [15], where also an overview of the physics processes for
peripheral collisions with relativistic heavy ions is given.

by, which slightly changes the momenta of both particles. The change is however
very small and this process has therefore very little influence on the behaviour of
the beam. A very small deviation in momentum can be tolerated, and accord-
ing to [14] Rutherford scattering does not change the momenta enough to cause
problems for the machine operation.

In Free Pair Production, the virtual photon exchanged by the ions is converted
into an electron-positron pair. The change in momentum for the involved ions is
also here so small that it does not have a big effect on the behaviour of the beam.

There is however also a probability that an electron-positron pair is created,
but that the electron is created in a bound state of one of the nuclei. This process
is called Bound Free Pair Production (BFPP). Explicitly written, the reaction is:

208Pb82+ + 208Pb82+ γ
−→ 208Pb82+ + 208Pb81+ + e+ (2.3)

The process can also be described with the Feynman diagram shown in figure 2.9.

The lead ions circulating in the machine will be fully stripped (they do not
have any electrons). The magnetic field in the beam pipe is adapted to bend these
fully stripped ions at a given energy so that they exactly follow the wanted path.
If an ion captures an extra electron, its charge will be changed, which means that
the Lorentz force acting on the ion will decrease. However, the momentum will
remain approximately constant, so the radius of curvature of the trajectory will
increase. These ions, which have captured an extra electron, will form a secondary
beam that will leave the wanted trajectory and be lost somewhere in the machine.

The severity of this effect depends on where in the machine the ions will end up
but also on the probability for the BFPP reaction. Numerous references exist [16,
17, 18, 19], where the cross section for the BFPP process is determined both
theoretically and experimentally. Since the cross section depends on the energy
of the particles, and no existing accelerator can even get close to the LHC-energy,
the experimental reports are always based on results for lower energies that are
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extrapolated to the LHC-energy. In [16], the cross section for BFPP is theoretically
calculated using the plane wave Born approximation. The calculation is performed
for electron capture into each atomic shell, and then the different contributions
are summed up in order to get the cross section for capture to any shell.

If the two colliding ions have different charges Z1 and Z2 and the electron is
captured by the ion with charge Z1, the following approximate relationship for the
cross section for BFPP, σBFPP, is found:

σBFPP ∝ Z5
1Z2

2 (A ln γCM + B) (2.4)

Here also the coefficients A and B are slightly dependent on Z, although the
main Z dependence is in the first factors. The numerical values for AZ5

1Z2
2 and

BZ5
1Z2

2 are given in [16] for different ions, energies and atomic shells where the
electron is captured. Numerically, the resulting value for the total cross section
for two colliding lead ions with Z1 = Z2 = 82 at an energy of 2.76 TeV/nucleon
(the nominal energy in the LHC) is:

σBFPP = 281 barn (2.5)

This cross section refers to electron capture to one specific ion in the pair. The
cross section for electron capture to either of the two involved ions is twice as large
as the value given in equation (2.5). The derivation of the formulas and value for
the cross section can be found in the original paper [16].

Today this is believed to be the best estimate available, and this is also the
value used in [13]. In [16] a comparison is made with other estimates and a fair
agreement is found.

The value of this cross section can be compared with the total cross section
for hadronic interactions between the colliding ion bunches. This cross section is
σH = 8barn according to Section 21.4 in [13]. This means, that the BFPP reaction
is around 35 times more likely to happen than the wanted hadronic interactions
that will be the main subject of study by the experiments. The very large value
of the BFPP cross section gives a hint that it could cause severe problems for
the accelerator operation and that a closer investigation of its consequences is
necessary.

Any accelerator has a certain tolerance for deviations. If the momentum of
a particle changes only slightly, it might still be that it never hits the beampipe
but instead stays on an off-centre orbit. This way it is not useful anymore in the
experiments, but it stays in the pipe and does no damage. But if the momentum
change is too large, the particle starts to diverge so much from the wanted trajec-
tory that it hits the inside of the pipe. If the original momentum for the particle
on a closed orbit is p and it after some physical process changes its momentum to
p(1+ δ), the dimensionless number δ is called the fractional momentum deviation.
For the LHC, the tolerance limit is [14]:

δ < 6 · 10−3 (2.6)

Although BFPP does not change the momentum of the ions, the condition (2.6)
can be used in order to see if the affected ions will stay in the beampipe or not.
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The radius of curvature ρ of a particle with charge Zq and momentum p in a
magnetic field B is [12]:

ρ =
p

ZqB
(2.7)

Thus if the particle changes its momentum to p(1 + δ) through some physical
process, the new radius of curvature ρnew will be:

ρnew =
p(1 + δ)

ZqB
= ρ(1 + δ) (2.8)

On the other hand, if the particle changes its charge to Z − 1 through BFPP, the
new radius of curvature is instead

ρnew =
p

(Z − 1)qB
= ρ

Z

Z − 1
(2.9)

When a particle changes its radius of curvature, this effect can be both due to a
change of momentum and a change of charge. With equations (2.8) and (2.9) it is
possible to evaluate which momentum deviation δ a particle would need in order
to have the same new radius of curvature as if it charge had changed through
BFPP. So putting equations (2.8) and (2.9) together gives:

p(1 + δ)

ZqB
=

p

(Z − 1)qB
⇒ δ =

1

Z − 1
(2.10)

For lead ions, Z = 82. Put into equation (2.10), this gives

δBFPP = 0.012 (2.11)

which does not fulfil condition 2.6. Thus it is clear that the ions that have under-
gone BFPP will not stay inside the beampipe. Instead, they will hit the inside of
it at some point, possibly causing damage. The first step in finding out if they
will do any damage is to calculate how far in the LHC they will go before they
collide with the beam screen.

In [13], a tracking of the wrongly charged beam from IP2 has been done using
the software MAD-X [20]. The secondary ion beam that has undergone BFPP was
tracked through the magnetic field in the beam pipe, and it was concluded that
it will hit the beam screen in a dipole magnet about 400 m from the interaction
point. A picture from this tracking is shown in figure 2.10. The BFPP reaction
will take place at each of the three IPs where the ion beams collide, with two
secondary beams emerging from each IP, so in total six dipoles are affected. How
this will affect the machine is difficult to tell a priori, but it is clear that the ions
will deposit a large amount of energy in the beam screen and in the coils of the
magnet behind it. This in turn can raise the temperature of the magnet, which
eventually can lead to a quench. To see how dangerous this energy deposition is,
a closer calculation is needed, and that is one of the main tasks in this report.
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Figure 2.10. The traces of the primary beam and the secondary beam produced by
BFPP through the beam pipe. The interaction point is at the left edge where the beam
envelope is very small. To the right in the figure, almost 400 m from the interaction point,
the main beam is going straight while the wrongly charged secondary beam leaves the
trajectory and hits the beam screen. In the computer model, the original curved geometry
and magnetic field were transformed to be straight. The figure is taken from [13].
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2.6 Interaction between particles and matter

When the lost ions hit the beam screen and continue further into the supercon-
ducting coils, they will deposit heat, which will raise the temperature. In order
to understand this, a short overview of how particles loose energy when passing
through matter will be given. A more detailed description is given for instance
in [21].

Particles lose energy when they pass through matter through several processes.
At lower energies, the dominating loss mechanism for heavy charged particles is
ionization, caused by the electromagnetic interaction between the impinging par-
ticle and the atomic electrons of the bulk. Sometimes the bulk electrons receive
enough energy to become free, causing in turn secondary ionization; sometimes
they only get excited to a higher atomic shell. This energy loss is very well de-
scribed by the Bethe-Bloch formula [22]:

−
dE

dx
=

Z2
1e4ne

4πǫ20mev2

(

ln
2mev

2

I(1 − β2)
− β2

)

(2.12)

Here dE/dx is the so called stopping power, meaning the energy loss of an incident
particle per unit path length inside the material, Z1 the charge number of the
impinging particle, ne the electron number density of the bulk element, I the
effective ionization potential of the material, me the electron mass, ǫ0 the dielectric
constant, v the speed of the impinging particle and β its fraction of the speed of
light as defined in special relativity.

If an impinging particle has a higher energy, above a so-called critical energy
Ec, other effects become more important for the energy loss — here the energy
loss is dominated by bremsstrahlung and pair production, and also photonuclear
interactions come into play.

Bremsstrahlung is electromagnetic radiation emitted by charged particles that
are accelerated. Often the term is however used for describing the radiation of
impinging electrons deflected by the Coulomb field of the nuclei. The stopping
power from bremsstrahlung is [22]:

−
dE

dx
∝

Z2
1Z2

2

A

(

e2

mc2

)2

E (2.13)

Here E is the energy of the impinging particle, m its mass, Z2 is the charge number
of the bulk material and A its atomic mass number. The effect is a lot more
important for light particles, for instance for electrons, since the energy deposited
through bremsstrahlung is inversely proportional to the square of the mass of the
particle. The energy loss is also proportional to E, meaning that also for heavier
particles the effect is significant at higher energies.

Also production of electron-positron pairs is an important process for energy
losses. The pair is created by the electromagnetic interaction between the charged
projectile and the nuclei of the target. They exchange a virtual photon that
converts into a pair. The stopping power from pair production is proportional to
the energy of the projectile:
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dE

dx
∝ E (2.14)

The last important process for energy loss in matter is photonuclear interac-
tions. Also in this process the projectile and a target nucleus exchange a virtual
photon, but the photon excites the nucleus or even leads to nuclear break-up. Also
for photonuclear interactions is the stopping power proportional to the energy of
the impinging particle.

The total stopping power is the sum of the contributions from all of the above
processes.

When a highly energetic particle hits a material, a so-called electromagnetic
shower will develop. Through bremsstrahlung high energy photons are emitted,
which later convert into electron-positron pairs. These particles in turn emit
more photons through bremsstrahlung, which again convert to new electrons and
positrons. Thus the number of photons, electrons and positrons increase expo-
nentially, but in every step the energy of the particles is divided by two. And at
some point the energy of a single particle is so low that the cross sections for the
two involved processes, bremsstrahlung and pair production, have decreased so
much that other processes dominate, for instance ionization. So just one incident
particle with a very high energy can give rise to a vast number of so-called sec-
ondary particles inside the material — particles created at a later stage directly
or indirectly by the first particle.

All secondary particles also scatter elastically many times, so-called multiple
scattering, on the Coulomb field of the nuclei. This process slightly changes the
direction, but not the energy, of the particles randomly. So the shower particles
will spread out more and more transversely, defining the spatial shape of the
distribution of the energy deposition. In figure 2.11, the energy deposition from
a FLUKA [23, 24] simulation is shown. A single lead ion at an energy of 2.76
TeV/nucleon was shot at a solid copper block. The energy is plotted in with
colour codes in the x− z−plane in a 1 cm thick slice in y around the origin, where
the initial ion hits. Inside the material the shape of the electromagnetic shower is
clearly visible. The FLUKA code is described in more detail in Section 3.2.

For some of the mechanisms, the energy loss rises proportional to Z2
1 , which

can be seen in equations (2.12)–(2.13). This means that a heavy ion will lose more
energy per unit path length in a material than for instance a proton, meaning
in turn that the energy deposition from an ion will be much more concentrated.
However, an ion also starts to break up when it enters a material. It splits into
smaller fragments, ranging from nuclei almost as large as the initial ion down
to alpha particles and single protons and neutrons, through electromagnetic and
strong interactions with target nuclei. The break-up process continues until the
ion is completely split into separated nucleons.

The result is a high peak in the energy deposition of an ion the first centimetres
in the material before the nucleus has split—the exact distance the ion needs
to break up depends on the material it enters. If instead high energy protons
hit a solid, this peak will not be there. But after this first distance, the spatial
distribution of the energy deposition for an ion and a proton will be practically the
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Figure 2.11. The energy deposition from a single Pb82+ ion at nominal LHC energy
2.76 TeV/nucleon hitting a solid block of copper under straight angle at the coordinate
origin. The energy is scored in a 1 cm thick slice around the impact point. The impact
was simulated with FLUKA.
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Figure 2.12. The energy deposition for one 2.76 TeV/nucleon Pb82+ ion in a block of
copper compared with the energy deposition from its free constituents; 82 protons and
126 neutrons at the same energy, computed with a FLUKA simulation. Pencil-like beams
of 2.76 TeV/nucleon lead ions, protons and neutrons were shot on a 5 m thick box of
copper.
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same except for a scaling factor, since the ions are now split into single nucleons.
This can be seen in figure 2.12. Here the deposited energy as a function of depth
in the material, in this case copper, is shown both for protons, neutrons (explained
in the next paragraph) and lead ions. The sum of the energy deposition for 126
neutrons and 82 protons do not quite sum up to the energy deposition of one lead
ion. This is due to he fact that the average is made in a rod with a very small
area of 0.01·0.01 cm. The showers from single nucleons are more spread out than
the shower from an ion, which is kept together for longer, and therefore the ion
will deposit more energy in a narrow bin around the impact point.

So far only charged particles have been mentioned. Neutrons from the original
impinging ion have no charge and thus no Coulomb interaction. They interact only
via the strong nuclear force, but neutrons give rise to many hadronic processes
in which other hadrons are produced, for instance protons or pions. The overall
effect is that also high energy neutrons create an electromagnetic shower indirectly
through these secondary particles. This shower has the same qualitative shape
as the one for protons. When a neutron has lost most of its energy, the cross
sections for creation of other particles becomes very small, which means that
these low energy neutrons do not have many interactions. So low energy neutrons
can penetrate very deeply into matter. Apart from hadron production, the most
important ways in which neutrons lose energy are [22]: nuclear excitation, neutron
capture (where the neutron is captured by a nucleus, thus producing an isotope
in an excited state), neutron induced fission and emission of nuclear particles.

2.7 Choice of method

In order to find out if the dipole magnets quench or not when hit by the secondary
ion beam, it is necessary to compute the temperature rise caused by the impact
and then to determine if it brings the superconductor over its critical surface in
a volume large enough for the quench to propagate. Several more or less realistic
methods exist for treating the problem. The best would be to directly perform
an experiment, where high energy ions were to be shot on a superconducting
cable. This is however not very realistic. At present, neither the lead ion beam
at nominal energy nor the cryogenic system used for cooling are available. And
even if they were, such an experiment would be very expensive and complicated
to set up. Even computer simulations of the whole process, from the beam impact
to a resulting possible quench is very difficult to perform. For instance, the heat
power taken out of the cable by the helium cooling system is very hard to model
in a meaningful way, which is described more closely in Chapter 5. No suitable
existing code was found that could perform all these steps.

Instead, the problem has to be split into several parts. Computer simulations
can give an estimate of the spatial distribution of the power deposition caused by
the lost particles, which is done in Chapter 4. To estimate the temperature rise in
the superconductors caused by this power input turns out to be the hardest part
of the problem. Due to the very complex behaviour of the heat transfer inside
the cable and out through the insulation, it is very hard to model this accurately
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in a computer simulation and the only realistic method is an experiment. An
experiment trying to determining the power transfer through the cable insulation
has however been done [25], and in Chapter 5 an attempt is made to use this
experiment to determine the relation between power input in a cable and the
resulting temperature. The last part, to investigate which temperature rise brings
the superconductor over the critical surface, is better known. This has already
been done through computer simulations by the magnet division at CERN [26],
and this result will be used directly.

For the simulation of the beam impact, the Monte Carlo code FLUKA [23, 24]
was chosen. It was the only particle transport code found that had a well tested
implementation of the physics for heavy ions. The only option was GEANT4 [27],
where however the ion physics modules are still under development. A Monte Carlo
simulation, like the FLUKA program, simulates the physical processes occurring
when the ions hit a material through the sampling of random numbers, which
determine the outcome of each quantum mechanical process on a microscopic level.
When many impinging particles are simulated, the energy deposited inside the
material will converge towards an average. The Monte Carlo method is described
in detail in Chapter 3.1 and the FLUKA code in Chapter 3.2.

The problem with the beam loss monitor system, described in Chapter 6, will
be treated with the same method. The beam loss monitor system is a system of
detectors placed outside the cryostat in the LHC, which will continuously mea-
sure the flux of secondary particles during operation. If the relation between this
measurement and the temperature in the superconducting cables is known, an
electronic system can decide to abort the beam before a quench occurs if the ca-
bles start to get too hot. The present design [28, 11] is based on proton operation,
and the task in this thesis is to investigate if this setup is appropriate also for ions.
Due to the complexity of the problem it is natural to once again do FLUKA sim-
ulations, this time with both protons and ions, and compare the energy deposited
in the coils with the energy deposited in the BLMs for both cases.

In Chapter 7 finally, an attempt is made to test the FLUKA simulations
through a comparison with experimental data from RHIC. There an experiment
was made, where the flux secondary particles caused by BFPP was measured by
a system of detectors outside the cryostat.



Chapter 3

Monte Carlo simulations

3.1 General theory of Monte Carlo simulations

Generally speaking, a Monte Carlo method is a numerical method based on random
numbers [29, 30]. Monte Carlo methods can be used to solve a wide range of
problems from pure mathematics and physics to finance. The idea is to first
make a mathematical model using functions of random variables, and then make
several trials, and in each trial sample these random variables and record some
desired quantity. Then the average over all the runs will converge towards the
true solution of the problem. Monte Carlo methods are implemented as computer
programs and used to solve problems which are not analytically solvable and where
classical numerical methods converge too slowly or are too complicated.

Quantum mechanical problems are very well suited for the Monte Carlo method,
since they by nature are based on randomness. A measurement of a quantum me-
chanical process is never deterministic but has instead a probability distribution
for a set of possible outcomes. This gives a natural connection to random variables,
upon which a Monte Carlo simulation can be based.

3.1.1 Random numbers

The very basis of every Monte Carlo method is random numbers. How is it possible
to obtain truly random numbers? A detailed description of how random numbers
are generated is beyond the scope of this report, but a brief overview will be given.

Basically there are two types of random numbers: true random numbers and
pseudo-random numbers. The first ones could theoretically be sampled from for
instance white noise in an electric circuit or the decay of single atoms in a ra-
dioactive material. The use of real random numbers in computer simulations are
however not practical for several reasons. Some external hardware must be con-
nected to and interfaced with the computer, which can be quite complicated and
expensive. One would also have to make periodical checks of the quality of the ran-
dom numbers, since even a small technical defect could bias the result. Moreover,
once a simulation is performed, the exact same simulation would be impossible

29
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to reproduce, since the random numbers it is based on change all the time. A
possibility could be to gather large tables of random numbers and record them.

A much simpler and more practical approach is to use so called pseudo-random
numbers. These numbers are generated from a mathematical algorithm and thus
not truly random in the sense that they can be predicted and have a deterministic
behaviour. However, if the algorithm used is good, a large set of pseudo-random
numbers show the same statistical properties as true random numbers. Normally
the pseudo-random numbers, generated in this way by a computer code, called a
random number generator, are used in Monte Carlo simulations.

In each trial in a Monte Carlo simulation random numbers have to be produced
as if they were single samples from of the random variable with a some probability
density function (PDF). The technique to do this usually starts with sampling a
random number, which is uniformly distributed between 0 and 1. This is done by
a pseudo-random number generator. This generator can then be general and used
in a lot of different problems involving different PDFs. Having the random number
from the uniform distribution at hand, one has to somehow convert it, so that a
large number of these values would be distributed with the wanted PDF from the
initial problem. Call the uniformly distributed number u, let f(x) be the PDF one
wants to sample from and let F (x) be its cumulative distribution function (i.e. its
integral). According to elementary probability theory, see for instance [31], F (x)
is an increasing function and will take on values between 0 and 1. Therefore, if
one sets

F (x) = u (3.1)

and solves this equation for x, this variable will be distributed exactly as wished.
The proof of this is straightforward. One can consider the probability that x < x0

for some fixed x0 and, assuming equation (3.1), show that this is equal to F (x0):

P{x < x0} = P{F (x) < F (x0)} = P{u < F (x0)} = F (x0) (3.2)

The first equality in equation (3.2) follows from the fact that F (x) is an in-
creasing function, the second equality from equation (3.1) and the last one is true
because u is uniformly distributed between 0 and 1.

So with the use of uniformly distributed random numbers from generators,
it is possible to obtain an arbitrarily distributed random number by means of
simple mathematical operations, as long as equation (3.1) is analytically solvable.
Even if this is not the case, it is possible to do the transformation to the wanted
distribution, but these methods are beyond the scope of this text.

3.1.2 Schematic Monte Carlo model of the present problem

In the problem that is treated in this report, a large flux of ions is hitting the
inside of the beam pipe. There they interact with the matter in different ways
as described in Section 2.6. Each of all the possible interactions has a certain
probability. A Monte Carlo program that solves the macroscopic behaviour of this
system could therefore be schematically modelled in the following way:
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a) Consider one primary particle (this is a particle that is present from the
beginning in the problem; in this case it is one of the original ions from the beam).
According to some predefined and fixed initial conditions it has some momentum
and position in the geometry.

b) Find the PDF of the distance that this type of particle travels inside the
current medium before it interacts for the first time. This distribution is different
for different types of particles and different media.

c) Use a random number generator to sample a value in such a way, that if
an infinite number of values were sampled, they would be distributed as samples
from a random variable with the above-mentioned PDF. This is done as described
in Section 3.1.1. The sampled value will be the distance the particle travels in
the material before its first interaction. Transport the particle this distance (i.e.
change its coordinates).

d) Consider all the possible interactions that can take place for the particle in
the present medium and give each one of them a number. Call the probability for
interaction number i for Pi and suppose there are n possible interactions. It must
be true that:

n
∑

i=0

Pi = 1 (3.3)

Sample another uniformly distributed random number. If this number lies in
the interval [0, P1[ let interaction number one take place, if it is in [P1, P1 + P2[
let the second interaction take place and so on. This gives the right probabilities
for all possible interactions. The interaction probabilities are computed from the
cross sections for the different processes.

e) Change the coordinates and momentum of the particle according to the
interaction - maybe one here has to sample additional random numbers in order
to determine scattering angles etc. It is also possible that new particles are created
during the interaction. In this case, also these particles have to be transported.
All particles that are active at the moment are placed on the computer stack along
with their momenta and spatial coordinates. It is also possible that a particle is
annihilated during the interaction, and then it is simply removed from the stack
and its energy is deposited in some way that is recorded by the Monte Carlo-code.

f) Once the interaction of the first particle is finished and it is placed on the
stack together with the possible new particles, take the first particle on this stack
and go back to b) and transport it.

The transport of every particle also has to end somewhere; otherwise the sim-
ulation could run forever. For instance, a geometrical boundary could be made so
that when a particle is passing this boundary it is immediately taken out of the
simulation, or the geometry of the problem could be surrounded by some artificial
medium where all particles are immediately eliminated from the simulation and
deposit all their energy. When the stack is empty, i.e. when the first primary
particle is either annihilated or has left the geometry, and the same accounts also
for all secondaries (new particles created by the interactions of the primary par-
ticle), the next primary particle is loaded onto the stack and transported. The
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simulation finishes when the stack is empty and all primary particles have been
transported. During the simulation the Monte Carlo-code has recorded the quan-
tities of interest. The larger the number of primary particles is, the closer the final
result is to reality.

As described above, the simulation is called analogue. This means, that all
physical processes are faithfully reproduced. The recorded quantities will converge
towards the true average of their distributions, and also the variance and all higher
moments calculated over the different trials (i.e. primary particles) will converge
towards their true value. However, sometimes this convergence is very slow. If one
for instance wants to study some very rare physical event, one would have to do a
huge amount of trials in order to obtain enough statistics to see the convergence.
Another example are some problems with high energy beams - in these cases a
very large amount of secondary particles, which are quite similar to each other,
are produced. To track all these particles takes a lot of time. For instance, as
described in Section 4.3, a simulation of one single lead ion at nominal energy
(2.76 TeV/nucleon) in the full geometry of a dipole takes more than 30 hours on
a 2.4 GHz Pentium 4 computer. In the cases where the analogue calculations are
slow, there are a number of so-called biasing techniques that can be used in order
to speed up the simulation.

The biasing techniques are used to change some properties in the problem,
often in an unphysical way, so that the total time needed to get sufficient statis-
tics for the desired physical quantity is shortened. This could be done by either
reducing the variance of the trials so that a smaller amount of primary particles is
needed for convergence, or by reducing the computer time needed to handle each
primary particle. Generally, the price one has to pay for this is that the statisti-
cal fluctuations and the higher moments in the real physical process are lost. It
also requires a great deal of physical judgment and deeper understanding from the
user. A biased Monte Carlo cannot be used as a black box. In general, the user
also doesn’t get definitive results after the first run, but needs to make several
consecutive runs in order to optimise the biasing parameters. A large number of
biasing techniques exists, and the ones relevant for the specific problem treated in
this report are discussed in more detail in the Sections 3.2.1 and 4.3.

3.1.3 The role of Monte Carlo simulations

In physics, the role of Monte Carlo simulations lies between theory and experi-
ments. In applications where confirmed theoretical models exist, but experiments
are not available or too difficult, dangerous (in the case of spacecrafts or nuclear
reactors) or expensive to perform, and analytical solutions are impossible, Monte
Carlo simulations are often used to make predictions. For instance, in the develop-
ment of machines like particle accelerators, spacecrafts or nuclear reactors, where
radiation plays an important role, Monte Carlo simulations are very important.
These machines have to work properly from the moment they are turned on, and
the design can be thoroughly tested with inexpensive computer simulations. In
the field of particle accelerators, the use of Monte Carlo simulations may seem a
bit more risky, since accelerators are often constructed to work at and beyond the
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limits of existing theories, upon which the Monte Carlo codes are based. The sim-
ulations only take into account the physical processes the programmer puts in to
them and new phenomena will not be accounted for. However, aspects such as like
radiation protection are often not so tightly connected to the new phenomena that
one wants to study, but rely more on well tested theories. Also one often wants
to test whether some theory is correct with an experiment, or to distinguish be-
tween competing theories. Then Monte Carlo simulations can be performed based
upon the different theoretical predictions, and these results can be compared with
the experimental data. But completely new phenomena can of course never be
predicted by this kind of computer simulations.

In the problem treated in this report, Monte Carlo simulations are a very useful
tool. A more or less well-known physical process can come into play during the
LHC experiments and damage the machine. In order to avoid this and determine
some limits for the different parameters of the particle beam, cheap computer
simulations prove an excellent tool and the only realistic method. In this problem,
the simplest approach is to use existing software, maybe with some modifications,
rather than writing a new Monte Carlo code from scratch, which is very time
consuming.

3.2 The FLUKA program

The software found most suitable for simulating the energy deposition of the lost
ions in the magnet was FLUKA [23, 24]. An appropriate code must have a well
tested implementation of ion physics and because of that FLUKA was the best
option. The only alternative found, GEANT4, is still under development when it
comes to heavy ion interactions.

FLUKA is a Monte Carlo code for particle interaction and transport. The first
version of FLUKA was developed already in 1962 at CERN. This version handled
only high energy proton beams and was used to design shieldings of high energy
proton accelerators. Since then, the code has been continuously modified and
improved in order to handle new particles, energy ranges and interactions. Also
as the physics has evolved over the years FLUKA has been modified to use better
and more accurate physics models. The name FLUKA was invented in 1970 and
is short for ”Fluktuierende Kaskade” in German. At that point FLUKA was used
to study calorimeter fluctuations.

The present version of FLUKA has little or no remnants of older versions. It
is now maintained, developed and distributed by an official collaboration between
CERN and INFN1 Milan, but also people from other institutes and universities,
for instance NASA2 and SLAC3, are contributing. At present, FLUKA is used for
a wide range of applications. Some examples are spacecraft radiation protection,
particle detectors, radiation cancer therapy, nuclear waste management and beam-
machine interactions in accelerators at CERN and SLAC. For a detailed description

1Instituto Nazionale di Fisica Nucleare
2National Aeronautics and Space Administration
3Stanford Linear Accelerator Center
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of the history of FLUKA, see for instance chapter 23 in the FLUKA online manual
available at [32].

FLUKA is based on five major modules, which are fully integrated with each
other, for handling different interactions and particles: Hadrons, muons, electrons
and photons, low energy neutrons and heavy ions. A detailed description of the
different models and their implementation is beyond the scope of this text but can
be found in the FLUKA reference manual.

3.2.1 General use

Detailed instructions on how to use the FLUKA program can be found on the
FLUKA website [32], for instance in the online manual. Here only a short overview
of the main features will be given.

In order to use FLUKA, the user has to create an input file, which contains all
relevant data in the problem. The input file is a simple text file, in which the user
writes so-called data cards. A data card is one or more lines in the input file that
consists of a string with the name of the card followed by a number of numerical
parameters and one alphanumeric. In this way all properties of the problem are
defined. An example of a data card is the BEAM card. The numerical values
of this card assign energy and particle type to the primary particles and also
the statistical properties for beams that are normally or uniformly distributed in
energy, direction or position.

The geometry of the problem is built in three dimensions using a number of
standard bodies, for instance cylinders, spheres, parallelepipeds or half spaces.
Each body has a data card, where the numerical parameters define its position,
orientation and dimensions. The user can then define regions, which can consist of
one or more bodies and one or more intersections or unions between bodies. The
regions define the real geometry of the problem as it is seen by the transported
particles. To each region a material should be assigned. The materials can either
be defined by the user through the MATERIAL card followed by different proper-
ties and the material name, or assigned directly as a standard FLUKA material —
the most common elements are already defined inside FLUKA. Also compounds
consisting of several elements can be defined.

As mentioned above, the geometry of the problem has to be surrounded by
so-called ”black hole”. This is a special material, already defined in FLUKA, in
which all particles are immediately taken out of the simulation, depositing all their
energy. Otherwise a simulation could run forever and the user would have to define
infinite geometries.

In order to use electromagnetic interactions, the user also has to prepare a
so-called pemf4-file containing cross sections for electromagnetic reactions for all
materials present in the problem. This is a simple text file containing different
properties of the materials. Then he has to run an external pre-processor that
calculates the cross sections from the text file. In future versions of FLUKA this
somewhat tedious procedure will disappear.

4Preprocessor for electromagnetic FLUKA
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Another important aspect worth mentioning on the use of FLUKA is the dif-
ferent biasing techniques that are implemented. As described in Section 3.1.2,
biasing is used to reduce the variance, that is, to speed up the simulation. The
simplest biasing technique used in FLUKA is called importance biasing. Using this
method, a relative importance value is assigned to each region in the geometry.
The regions of interest should be assigned higher importances. When a particle is
transported from a region of lower importance to a region of higher importance, it
is split into several identical particles according to the quotient of the importances.
And vice versa, when it goes to a region of a lower importance it is taken out of
the simulation with a probability corresponding to the same quotient.

When a particle is split or removed, the statistical weight of the particles has
to be adjusted so that the total weight is the same as in the analogue simulation.
So in regions with higher importance, a lot of particles are transported, and thus
the statistics are considerably improved here, while the statistics become worse in
regions with lower importance. The importances can also be assigned differently
for each particle type. In the problem with the ion beam impinging on the beam
screen, it is suitable to set a high importance to the coils, which are the regions of
interest, and all parts of the magnet that are close. And a lower importance can
be assigned to regions further away in the periphery. In this way, a minimum of
computer time is wasted on transporting large amounts of secondary particles in
the outer parts of the magnet that are of little interest.

Another very effective biasing technique is leading particle biasing. The elec-
tromagnetic shower that evolves when a high energy particle beam hits matter
is made up of a huge number of electrons, positrons and photons, as explained
in Section 2.6, and the number of these particles increase very rapidly until they
have lost most of their energy. Tracking all of these particles requires a lot of CPU
time. A very good approximation to the real problem is if in each reaction, where
the final state normally consists of two particles, only one of them is kept and the
other one removed. The statistical weight of the particle that is transported has
to be modified in an appropriate way so that the total weight is conserved. In
this way, less electrons, positrons and photons are transported, which means that
the statistics on the electromagnetic part becomes worse. But if the biasing pa-
rameters are tuned wisely, there are still so many of these particles being tracked
that it is sufficient compared with the other interactions that also contribute to
the energy loss.

A very simple but yet effective biasing method is an energy cut-off for electrons
and photons. This means, that electrons and photons below a certain threshold
are not transported and immediately deposits their energy. This is of course un-
physical, but if the cut-off threshold is low enough it will have very little influence
on the final result. Typical magnitudes of this cut-off could be between 1 MeV
and 20 MeV. Higher energies and other particle types are a lot more important
for the scoring. So some computer time can be saved if these low energy particles
are not transported.

In order to avoid large fluctuations in the statistical weight of the particles, a
weight window can be applied. The weight window should be used together with
other biasing techniques that produce large variations in the statistical weights



36 Monte Carlo simulations

of the particles, for instance leading particle biasing. The weight window is, like
importance biasing, a combination of splitting and removing particles, but instead
of being based on the relative importances of the regions, the rules for when to
split or remove a particle are based on its statistical weight. The variance is
negatively influenced if a single particle gains too much statistical weight, since a
single process for this particle can significantly influence the final result. Therefore
all particles with a weight above a certain threshold are split. Also, if a particle has
a very low weight, it will have almost no influence on the final result. Therefore one
can save computer time without much influence on the final result if this particle
is not tracked. So all particles with a weight below another threshold are put to a
random test where they can either be removed or continue being transported. The
thresholds are set differently depending on the energy of the particle. The user has
to give two energy thresholds and the weight limits at these energies. Then the
weight window changes linearly between the energy limits to make it continuous
and is constant below and above these energies.

All the above methods are quite flexible — in FLUKA most of them can be
tuned for each region and particle type, and sometimes also for specific physical
processes.



Chapter 4

Simulation of ion beam
losses in a LHC main dipole

In this chapter the simulations of the wrongly charged ion beam hitting the dipole
magnet will be described. The work that needed to be done in order to perform
the simulations was:

a) Write FLUKA input, which means first make the computer model of the
dipole, then determine which biasing techniques should be used and how and then
set up the virtual detectors in the problem - that is, determine which physical
quantities should be scored and where and how they should be scored.

b) Write additional Fortran routines for interpolating the magnetic field and
injecting the source particles into the simulation and compile and link them with
the main program and then run the simulation.

c) Analyze the results.

4.1 Modelling of the dipole

In order to model an LHC dipole magnet in FLUKA, some simplifications must
be made. As described in Section 3.2.1, the geometry in FLUKA is built from
intersections of a number of generic bodies (parallelepipeds, cylinders, half spaces
etc) which makes it time consuming and difficult to accurately model all parts
of a complicated object. Moreover, that a too complex geometry is not only
cumbersome to implement but can also considerably slow down the simulation
without significantly improving the quality of the result. In order to calculate the
energy deposited in the coils it is not necessary to describe all small details. Thus
some approximations of the magnet geometry can be made.

The real dipole section is slightly bent, to follow the curve of the design orbit
of the beam. However, one dipole has a length of approximately 15 metres, and
the LHC ring has a circumference of 27 km, so the angle covered by one magnet
is only approximately 0.03 rad. Thus the dipole can be modelled as a straight
cylinder instead of a small part of a torus (which is not implemented as a generic

37
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body in FLUKA).

The interactions of interest take place in the coils of the dipole. Parts of the
magnet far from the coils will have very little influence on the results. Therefore,
these parts can be much simplified or even omitted in the FLUKA model. Thus
the support post of the magnet, the alignment target, the instrumentation wires
and the bus-bars have been completely left out, as well as some of the screws and
hole in the outer part of the iron yoke.

The coils themselves were approximated as made of copper instead of the real
mixture of niobium, titanium and copper. The coils consist of 62.2% copper with
an atomic weight of 63.55 u, 17.8% niobium with a weight of 92.91 u and 20%
titanium with a weight of 47.87 u. So the average atomic weight of the coils is
65.64 u, which is very close to the weight of copper. Thus, when considering
only the weight, this approximation is very close to reality. When looking at, for
instance, induced radioactivity, it is important to model the compound accurately,
but for the energy deposition it is enough to use copper in the whole coils.

A transverse cross section of the computer model of the dipole can be seen in
figure 4.1, and a cross section of the real dipole was shown in figure 2.4. The origin
of the coordinate system was placed in the centre of one of the beampipes in the
beginning of the dipole with the z-axis pointing along the pipe in the direction of
the beam. One might think that also this simplified model is too complicated, since
the outer parts of the geometry have very little influence on the energy deposition
in the coils. However, the same computer model will be used for other studies
as well, for instance for a study of the beam loss monitor system in the LHC, as
discussed in Chapter 6. In these simulations also the outer parts of the dipole are
important, which motivates that they are modelled already on this stage.

Also the magnetic field of the dipole had to be taken into account. In FLUKA
this is done by writing a Fortran subroutine MAGFLD.f that has to be linked with
the main program. The subroutine receives as input the coordinates of a point in
space and returns the x-, y- and z-components of the magnetic field at that point.
The routine is called as soon as FLUKA transports a particle inside a region of
the geometry where a magnetic field is present.

The magnetic field in the LHC is constructed to be vertical in the beam pipe
and have a magnitude of 8.33 T in order to bend the particle beam correctly. One
might first think that a simple model with a homogeneous field in the y-direction
might be a good approximation. But in the simulation it is important that the field
is present and of correct magnitude also outside the beampipe, since the magnetic
field in the coils has an influence on the secondary particle shower and thus also
on the deposited energy. Therefore a detailed fieldmap from [33] was used, with
values of the true magnetic field in the dipole every 0.5 cm in the x-y-plane. The
z-component of the field is constantly zero. The field map that was used can be
seen in figure 4.2.

Thus the routine MAGFLD.f must first read the given fieldmap and then inter-
polate it in order to produce the field at an arbitrary point in space. In this case,
a linear two-dimensional interpolation was chosen, since it is simple to implement
and still has a good enough precision.
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Figure 4.1. The transverse cross section of the dipole as it was modelled in FLUKA.
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Figure 4.2. The magnetic field map that was used in the simulation. Only the first
quadrant is necessary, since the other three can be calculated via symmetries from the
first.
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Figure 4.3. A schematic picture of how the beam hits the inside of the pipe.

4.2 Modelling of the beam

The ion beam that was used in the simulation had to correspond as well as possible
to the real secondary beam of wrongly charged lead ions. According to Section 21.4
in [13], the footprint of the impinging beam on the beam screen can be approxi-
mated as a Gaussian distribution in momentum and position. So following [13],
the beam was modelled as normally distributed around z = 130 cm with a stan-
dard deviation of 55 cm longitudinally. In the x-y plane, the angle φ was sampled
from a normal distribution with average −π rad and standard deviation π/30 rad.
Then x and y were chosen so that every ion starts on the surface of the beam
screen, on the side that faces the other beam pipe. That is, if R is the radius of
the beam pipe, we set x = R · cosφ and y = R · sin φ. Also the momentum of the
ion beam was normally distributed around 2750 GeV/c per nucleon directed with
a 0.5 mrad angle towards the beam screen. The standard deviation was 0.01%
in z−direction and 2% in x and y. A schematic picture of how the beam hits is
shown in figure 4.3.

The above specifications give a fair approximation of the real beam. However,
the exact shape of the footprint on the beam screen may influence also the spatial
shape of the energy distribution inside the coils. A better accuracy in the simula-
tion results can be achieved by using starting conditions closer to reality. This can
be achieved by using the tracking software mentioned in Section 2.5 to track the
secondary ion beam from the interaction point, through the magnetic field in the
beam pipe to the point where it hits the beam screen, and export the momenta
and coordinates of the impinging particles directly to FLUKA.

In order to be prepared for the output from this new tracking, a Fortran rou-
tine called SOURCE.f was written and linked with the FLUKA main program.
This routine overrides the BEAM data card, which is the default way of injecting
primary particles into the simulation. This was done so, that whenever the main
FLUKA program requests a new primary particle, the SOURCE.f routine is called.
This routine then reads a file in which the momenta and spatial coordinates of all
the ions are written and returns the momentum and coordinates of one particle
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to the main program. In the present simulations, this file was made by a simple
Mathematica c© [34] notebook that samples the normal distributions mentioned
above. However, in the future this file can instead be made by the tracking pro-
gram. The reason why the output from the tracking was not used in the present
simulation was that the design of the LHC beam optics has undergone some minor
changes recently. And in order to give an accurate output the tracking algorithm
has to be modified correspondingly. This work is under way, and when it is done
new FLUKA simulations will be performed. A schematic picture of the tracking
made so far was shown in figure 2.10.

4.3 Biasing methods

The need for the biasing techniques discussed in Sections 3.1.2 and 3.2.1 becomes
clear when actual simulations are performed with the real geometry of the dipole
and ions at nominal energy. A preliminary simulation with one single ion injected
into the dipole at the nominal LHC-energy of 2.76 TeV/nucleon took more than
30 hours when run on a 2.4 GHz Pentium 4 computer. In order to get sufficient
statistics, it is necessary to have at least hundreds of ions. With this in mind, the
use of different biasing techniques to speed up the simulation is essential. However,
the biasing has to be carefully tuned, since a poor choice of the biasing parameters
may actually slow down the convergence instead of speeding it up, or in the worst
case give unphysical results.

First a simple importance biasing was applied, where the regions in the geome-
try were divided into four classes. The first class, with the most important regions,
consisted of the coils of the superconducting magnets and the surrounding parts.
This class was given the highest importance. The second class was the collar, and
the third class the remaining parts of the dipole. The fourth class consisted of the
regions outside the cryostat — the tunnel and tunnel wall. Between the different
classes a factor 1/3 was chosen as scaling factor of the relative importances. A
much lower ratio would induce unnecessary fluctuations, while a much higher ratio
would be too close to one and therefore not speed up the simulation enough.

Also a cut-off for electrons and photons was used, that was set differently in
the different regions, and a leading particle biasing with different thresholds was
applied throughout the whole geometry. A weight window was used for all particles
except for neutrons in order to compensate for the statistical weight fluctuations
caused by the other biasing methods. The energy limits were chosen to be 100 and
500 GeV. An overview of the biasing settings for the different importance classes
is given in table 4.1.

With all these biasing options turned on, the time needed to transport one
primary ion and all its secondary particles decreased to 11 minutes on the same
computer. With the biasing options turned on, the statistics for the outer parts
of the magnet in the lower class regions are a lot worse, but a good result of the
scoring in the coils without big fluctuations is achieved more quickly.
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Importance class 1 2 3 4

Relative importance 1 1/3 1/9 1/27
Cut-off γ [MeV] 0 1 10 10
Cut-off e− [MeV] 0 20 100 100

Lead bias below [MeV] 2 5 10 10

Table 4.1. The biasing parameters applied in the different region classes.

4.4 Scoring methods and results

In order to determine the power density deposited by the secondary ion beam in the
coils, one can use the USRBIN card in FLUKA. This option defines a spatial mesh
in some desired part of the geometry (in this case the coils of the magnet), and
after that different quantities can be recorded throughout the simulation in each
of the small cells in the mesh. For instance, one can score the energy deposition
per primary ion in the mesh and from that calculate the corresponding power.

This is done by multiplying the energy density per ion with the number of
ions per time unit that undergo BFPP — that is, the cross section σBFPP for the
reaction times the luminosity L of the lead ion beam according to equation (2.1).
So, with the numerical values for the cross section and the full design luminosity
from Section 21.4 in [13], the total power P (r) deposited per volume at position
r in the coils corresponds to an energy deposition E(r) per volume and primary
lead ion through:

P (r) = E(r) · σBFPP · L = E[J/cm3] · 281 · 10−24[cm2] · 1027[cm−2sec−1] ⇒

P (r) = E(r) · 2.81 · 105[W/cm3] (4.1)

A problem that arises quite soon is to determine the appropriate size of the
cells in the mesh. The non-homogenous distribution of the secondary beam means
that the power is not homogeneously distributed in the superconductors. If, for
instance, one took the whole magnet as one cell, the value of the deposited energy
per volume would be much lower than if one instead considered a very small cell
around the place where the centre of the beam hits the coil. So with a smaller mesh
the highest value of the deposited energy per volume is larger. This also leads to
a higher maximum temperature in the coil. Moreover, if the mesh is made finer
and finer, the value of the maximum energy deposition will converge if the area
of the beam is finite. Also the fact that the minimum propagating zone is of the
order of micrometres implies that a very small cell volume should be used.

On the other hand, too fine a mesh will also result in troubles. Since only a
limited number of primary particles are simulated and averaged over, there will be
statistical fluctuations. So the distribution of the spots on the beam screen where
an ion hits will not be smooth. Also, in this particular case where the variance
of the longitudinal beam coordinate is quite large, these fluctuations will be even
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greater. The spots in the coils located exactly behind the points on the beam
screen where an ion hits will therefore get a very high average energy deposition,
while spots lying in between will get a lower average. If the mesh is made very
fine, some cells will cover only these peaks where an ion hits, and these cells will
therefore have a very high average value of the deposited energy.

In reality, there are 281 000 ions per second undergoing BFPP according to
equation (4.1), so the distribution will be practically smooth. This means that the
real maximum will be lower than the peaks discussed above. If one takes too small
a mesh, and therefore arrives at a higher maximum, it is possible that the result
of the simulation is that the magnet quenches, when in reality it may actually not.
And if that is likely, one must take certain precautions in order to avoid it. So too
fine a mesh should also be avoided, in order not to have too pessimistic results.

So what is then the best mesh to use, in which the cells are small enough to
resolve the peak, but large enough not to zoom in on the statistical fluctuations?
The answer is hard to determine a priori, although some knowledge about the
physical processes involved can give rise to an educated guess. If steady state
is considered, it turns out to be necessary to average the power over the radial
dimension of the cable in order to compare the result with the experiments per-
formed in [25]. This is explained further in Section 5.1. So in steady state, only
one cell is needed in the radial direction, and thus the δr is set to 1.55 cm. In
the φ-direction, a superconducting cable can be well approximated as one ther-
mal body, while the heat transfer rate between different cables is low due to the
cable insulation. Therefore the dimension of the thickness of a cable, around 2
mm according to table 7.1 in [13], is a suitable length of the arc in the cell. This
gives appropriate intervals in φ. Longitudinally, a first estimate of a suitable cell
length is 1/3 of a nuclear interaction length in copper, which is 15 cm according
to [21]. This will capture a large part of the energy deposition originating from
one primary lead ion inside one cell, thus considerably suppressing the effect of the
statistical fluctuations without making the volume unnecessarily large. Another
interesting longitudinal binning is a ∆z of 15 cm, since this was the length of the
plates used in [25].

But when very short timescales are considered, the peak value of the energy
deposition is needed. How to choose the mesh here is not obvious. Therefore, in
one FLUKA run five different meshes in the inner coil were used simultaneously.
Four of them used cylindrical coordinates with the z-axis in the centre of the beam
pipe and in the direction of the beam, with the particles impinging at −π. One
mesh had Cartesian coordinates. The dimensions of the different binnings are
given in table 4.2. The old mesh is the one described above. The other meshes
are finer in order to see how the maximum converges and the fluctuations come
into play. The old and medium meshes were also used in the outer coil.

In order to avoid huge output files the z- and r-directions in the finer meshes
were limited to cover only a short distance around the point where the maximum
value was reached in earlier simulations. To get exactly the maximum was not
important at this stage — the purpose here was just to compare the shape of the
energy distributions in order to choose an appropriate binning. In φ the whole
2π had to be binned, since the USRBIN card in FLUKA does not allow anything
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Binning: Old Medium Small Xsmall Cartesian
cylindrical cylindrical cylindrical cylindrical

∆z[cm] 5 1 0.1 0.01 1
zmin[cm] -4460 -4460 -4310 -4302 -4460
zmax[cm] -3000 -3000 -4290 -4300 -3000
∆r[cm] 1.55 1.55 0.1 0.01

rmin[cm] 2.8 2.8 2.8 2.8
rmax[cm] 4.335 4.335 3.5 2.9
∆φ[rad] 2π/88 2π/88 2π/176 2π/176

Inner arc [cm] 0.2 0.2 0.1 0.1
Outer arc [cm] 0.310 0.310 0.125 0.104

∆x[cm] 0.25
∆y[cm] 0.25

Table 4.2. The dimensions of the meshes used in the inner coil. The ∆z, ∆x, etc are
the lengths of the cell in z- or x-direction. The inner arc is the inner length of the arc in
the innermost cell, and the outer arc is the length of the outer arc in the outermost cell.

else. To score only between certain angles in the geometry would require extra
user-written routines.

The beam distributed as described in section 4.2 was used, and 250 primary
particles were transported in the simulation. In order to perform the simulation
more efficiently, ten different runs with 25 particles in each were launched on
different computers on a cluster. After the simulations were finished, all runs were
combined together and averaged using simple software that had to be written
for this special purpose. The results were analysed and visualized using Physics
Analysis Workstation (PAW) [35].

The results were plotted as power deposition per volume against z for a fixed
r and φ for the different binnings in figure 4.4. The standard FLUKA output unit
GeV/(cm3· ion) was converted to power density with equation (4.1) with the GeV
converted to Joule. In figure 4.6 the energy deposition scored with the medium
binning used for determining quenching is shown for the inner and outer coils.
The energy deposition is plotted with colour codes in the φ− z−plane. The black
spot where the beam hits the beampipe is the hottest part and the place where
the danger of a quench is largest.

As can be seen in figure 4.4, the old and medium binnings oscillate a lot less
than the small and the xsmall ones. The maximum energy deposition per lead ion
and volume for the innermost r-value at φ = −π for the xsmall binning is over
225 mW/cm3, while the maximum for the old and medium binnings is around
7.2 mW/cm3. From the shape of the xsmall curve it is however clear that this
high peak is a statistical fluctuation. So the maximum values of the small and the
xsmall meshes should not be taken too literally. However, the average values of
the small and Cartesian binnings are fluctuating around straight lines higher than
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Figure 4.4. The power density for the old, medium, small and xsmall meshes plotted
against z for φ = −π rad and the smallest possible r (at the hot spot).
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Binning: Old Old 2 New 1 New 2 New 3

∆r(cm) 1.55 1.55 1.55/4 1.55/8 1.55/16
∆z(cm) 5 15 5 5 5

Table 4.3. The dimensions of the new meshes used. The other dimensions were the
same as for the old mesh.

the average of the larger binnings. This is due to the binning in r, which raises
the mean and which is not present in the medium and old mesh. So the higher
averages give a warning that if the binning in r is made finer, the maximum could
grow, maybe without introducing large fluctuations.

Thus the conclusion is that the old mesh and the medium mesh have good
longitudinal and azimuthal binnings for avoiding the spiky behaviour of the curve,
but that a finer radial binning may raise the maximum. So for the steady state case,
where no radial binning is needed, the old and the medium meshes are sufficient.
However, for the transient case, it is necessary to obtain the maximum. Therefore
another FLUKA run with three new meshes was launched. These meshes all have
the same radial and angular binning as the old mesh, but differ radially. The
different radial binnings can be seen in table 4.3. Also one mesh with the 15 cm
longitudinal binning called old 2 was used in order to compare directly with the
heat flow determined in [25].

The result can be seen in figure 4.5. It is clear from this figure that the absolute
maximum converges to 13.5 mW/cm3 as the binning in r is made finer. For the
steady state case, the old, old 2 and medium binnings give very similar results. As
maximum for the radial both the medium and the old binnings have a maximum
power density of 7.2 mW/cm3. Both maxima occur as can be expected in the
inner coil at the spot where the beam hits, which can be seen in figure 4.6.
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Figure 4.5. The energy deposition for the old 2, new 1, new 2 and new 3 meshes plotted
against z for φ = −π rad for all possible values of r. The highest curve is for the smallest
r-value in each diagram. As the radial binning is made finer, the maximum power density
converges to 13.5 mW/cm3. The peak in the curve for the smallest r-value in the new3

mesh is clearly a statistical fluctuation and therefore ignored.
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Figure 4.6. The energy deposition in the inner coil (left) and outer coil (right) scored
with the medium mesh plotted with colour codes in the φ-z plane (only one bin was used
in the radial direction). The incident ions are normally distributed around −φ = π rad.
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Figure 4.7. The energy deposition from BFPP scored with the cartesian mesh plotted
with colour codes in a horizontal plane of width 0.25 cm around the vertical centre of
the dipole. The white vertical stripe is the beam pipe where no energy is deposited, and
the two stripes on each side are the coils. The black spot to the left is the hottest part
where most of the ions hit the beam screen. The other beam pipe is to the left of the
region shown.
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Chapter 5

Quench limit and conclusion

In this chapter, an attempt is made to understand how the temperature rises in
the superconducting LHC cables when some power is deposited. From that it is
possible to draw conclusions about the maximum power that the cable can tolerate
before it quenches. This is done in Section 5.1. After that, in Section 5.2, these
results are compared with the results from Chapter 4 in order to draw conclusions
about whether the dipoles will quench because of BFPP. In order to further inves-
tigate the probability of a quench, also the transient case, that is the first instants
of time after the beam has been put into collision, is considered in Section 5.3.

5.1 Quench limit for the LHC main dipoles

In order to determine if a dipole magnet quenches or not due to the energy de-
position from the BFPP, one has to compute if the temperature rise inside the
superconductor is high enough to bring the superconductor over the critical sur-
face described in Section 2.3. From thermodynamics, the heat δQ per volume
needed to cause a temperature rise δT is

δQ = C · dT (5.1)

if the material has a specific heat C, which is normally a function of temperature.
C can be given as a fixed number for a specific body, or per weight or volume unit.
In this report, C will have the dimension J/(cm3·K), meaning that also the energy
δQ will be given per volume with the unit J/cm3. On very short timescales,
on the order of milliseconds, one can assume that no heat is transported away
from the local point where it is deposited and that the temperature rise is a local
process [7]. This can be useful when analyzing what happens during the first
moments of operation after the LHC beams have been put into collision. Then
equation (5.1) can be integrated directly and one can put Q equal to the energy
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deposited by the lost ions during a certain time interval:

Q =

T2
∫

T1

C dT (5.2)

Here T1 is the starting temperature, that is the temperature of the helium bath,
and T2 is the final temperature. The integral can be solved for T2 and compared
with the critical temperature of the superconductor.

However, if steady state is considered, the situation is more complicated and the
full heat flow has to be taken into account. The amount of heat δQ per volume
transferred between two bodies with temperature difference δT in the time δt
connected with a heat conductor with cross sectional area A and length L is [36]

δQ =
A · k(T ) · δT

LV
dt =

k(T ) · δT

L2
dt (5.3)

where k(T ) is the heat conductivity. This is a material parameter with the dimen-
sion W/(cm·K) and normally a function of temperature. The normalization over
the volume V of the heat conductor is done in order to express the transferred
energy per volume, and the expression was thus simplified using V = AL.

Consider now instead the case, where the two bodies are two neighbouring
infinitesimal segments inside a larger body with a temperature independent of
the y- and z-directions, for instance inside a thin homogenous rod along x. The
temperature inside the body as a function of position x and time t can be written
as T (x, t) and the distance between the neighbouring infinitesimal elements as dx.
If δQ is defined as the heat flowing in in the x-direction, the temperature difference
is T (x, t)−T (x+dx, t) and the transferred heat between the two elements becomes:

δQ =
1

dx
k
(

T (x, t)
)T (x, t) − T (x + dx, t)

dx
dt

= −
1

dx
k
(

T (x, t)
)∂T (x, t)

∂x
dt

The total heat increase per unit volume through conduction in an infinitesimal
element of length dx in time dt is the sum of the flow into the volume at the left
and the right boundaries (with the heat flowing in negative x-direction at the right
boundary). This is:

δQ =
1

dx

(

k
(

T (x + dx, t)
) ∂T (x, t)

∂x

∣

∣

∣

∣

x+dx

dt − k
(

T (x, t)
) ∂T (x, t)

∂x

∣

∣

∣

∣

x

dt

)

=
∂

∂x

(

k(T )
∂T

∂x

)

dt (5.4)

To this, also external sources of heat and heat removal can be added. This is, in
the case of the superconducting cable in the dipole, the power density deposited
by the lost ions during the time dt, Ploss(x)dt, which will depend on the spatial
coordinate. The external heat removal is the heat transported away per time
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and volume by the liquid helium, −PHe(T )dt, which depends on the temperature
difference between the conductor and the helium. Both Ploss(x) and −PHe(T )
have the dimension W/cm3.

Now when it is clear how the heat flows inside an infinitesimal volume of a
material, one can use equation (5.1) to see how this added heat changes the local
temperature during the time interval dt. So, combining equations (5.1) and (5.4)
and dividing with dt, one arrives at a differential equation for the temperature:

C(T ) ·
(

T (x, t + dt) − T (x, t)
)

=

∂

∂x

(

k(T )
∂T

∂x

)

dt + Ploss(x)dt − PHe(T )dt ⇒

C(T )
∂T (x, t)

∂t
=

∂

∂x

(

k
(

T (x, t)
)∂T (x, t)

∂x

)

+ Ploss(x) − PHe(T (x, t)) (5.5)

This is the full heat flow equation in one dimension. If three dimensions are
considered instead, the x-derivatives have to be replaced by ∇. If steady state is
considered, the time derivative on the left hand side can be set to zero.

The power deposited by particle losses was determined through Monte Carlo
simulations of the particle shower in Chapter 4. In order to solve the heat flow
equation, one also has to know the characteristics of the heat transfer between
the superconductor and the superfluid helium. This turns out to be very hard.
Not only is there a large number of helium channels inside each cable, with the
area between the helium and the conductors being very hard to calculate, but
also the thermal behaviour of the helium is very complex. The structure of the
wires inside the cable was shown in figure 2.6. Normally the heat flow between
a surface and a liquid is directly proportional to their temperature difference,
where the proportionality coefficient is called the heat transfer coefficient. In this
case however, it is more complicated. Firstly, the heat transfer coefficient for a
superfluid depends on the cube of the temperature of the solid — this phenomenon
is known as the Kapitza resistance. Secondly, if the surface temperature of the
conductor is high enough, helium will start to boil next to the surface of the
conductor, thus creating thin films of vapour next to the surface. This will also
change the heat transfer characteristics. Moreover, the heat transfer inside the
helium pipe has a very complex behaviour. The helium will be a mixture of
superfluid, fluid and some vapour next to the conductor interface, and the heat
transport is a counterflow process [10]. At the hot surface, superfluid helium will
pick up thermal energy and become normal fluid and flow in one direction, while
the superfluid phase will flow in the other direction. It is also not well known how
the heat flows out of the cable, through the insulation.

So the heat transfer process is extremely hard to model mathematically in a
meaningful way. However, there are ways to make estimates. In 1999, some exper-
iments were performed by C. Meuris et al [25], in order to test the characteristics
of different cable insulations. In these experiments, five plates made of stainless
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Figure 5.1. Schematical picture of the stack of five conductors in the experiment [25]
(left) and a drawing of one of the conductors used (right). The figures are taken from [25].

steel with a length of 15 cm were machined so as to resemble the geometry of
the superconducting cable with the helium channels and insulated with different
types of insulation. In the middle of each plate a temperature sensor was mounted.
Then the plates were enclosed in a pressurized cryostat containing liquid helium,
which was kept at a constant bath temperature. A drawing of one of the plates is
shown in figure 5.1.

In order to resemble the heating induced by the lost beam particles, a current
was run through the plates, causing Joule heating. For a lot of different types
of insulation, the temperature difference between the central conductor in the
stack and the helium bath was measured as a function of the power input. This
can be seen in Figure 5.2, which is taken directly from [25]. These curves can
also be inverted, in order to see the power conducted away from the conductors
as a function of the temperature difference, which one can use as the function
PHe(T (x, t)) in equation (5.5).

Since only one temperature sensor was mounted in the middle of the cable,
it is not meaningful to solve the heat flow equation radially. Although it is an
approximation, it has to be assumed that the temperature is constant radially and
one has to average the power input Pin(x) over the width of the cable. Also some
physical reasons exist that could motivate this averaging, since the coils are not
homogenous solids. If that were the case, a non-homogenously distributed energy
deposition would result in a non-homogenous temperature profile in steady state,
which can be realized when solving equation (5.5) in simple cases. In the case
of the coils, there is superfluid helium with an extremely high heat conductivity
flowing in channels inside the cables, rapidly distributing the heat and transporting
it away. Thus a cable can be more regarded as a wet sponge in a flow of water than
a homogenous solid. There will still be a small temperature difference between the
inner and outer radius, but the effect is a lot smaller due to the helium [37]. Thus
the coil can be regarded approximately to have constant temperature radially.

The azimuthal flow of heat between adjacent cables is small but not very well
known in detail. Therefore a good first approximation of the problem could be to
solve the heat flow equation in one coordinate along the longitudinal direction. It
is also worth noting that solving the full heat flow equation in three dimensions
imposes severe numerical difficulties. No suitable mathematics software package
has been found for the integration of this equation numerically in three dimensions,
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Figure 5.2. The temperature rise in the central conductor as a function of the power
input for different cable insulations in the experiment described in [25]. The insulation
that was actually chosen for the cables in the LHC dipoles is called A34. The power
input is given as an absolute power — in order to get the power per volume one has to
divide the scale with the volume 6.375 cm3 that was used in the experiment.The figure
is taken from [25].

which means that a solution algorithm would have to be programmed.

It is also worth noting that a rough first estimate of the temperature rise
inside the conductors can be taken directly from Figure 5.2 if one neglects also the
longitudinal heat flow. Then the expected temperature rise can be directly read
in the diagram if the power input from the particle losses is known. One can even
easily put up an upper quench limit for the magnet — if the power deposition is
lower than the power needed to raise the temperature to the critical one, neglecting
the longitudinal heat flow, the magnet will not quench.

In fact, the LHC design report [13] states 4.5 mW/cm3 as a limit for the
maximum allowed power deposition inside the coils due to beam losses, with a
reference to [25]. According to [13] it should have been concluded in [25] that a
power input of 4 mW/cm3 should cause a 1 K temperature rise, which through a
linear extrapolation gives at hand that an input of 4.5 mW/cm3 causes a rise of
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Figure 5.3. The fitted curve from Mathematica and the original data points for insula-
tion A34 in [7].

1.12 K. This is the allowed maximum rise due to beam losses if the temperature
margin is 1.4 K, which also can be seen from Table 7.3 in [13]. However, if one
examines the curve for the correct LHC insulation A34 shown in Figure 5.2, one can
see from the highest point on the curve that an input of 79 mW in the reference
plate (with a volume of 6.375 cm3), which corresponds to 12.4 mW/cm3, only
causes the temperature to rise by 241 mK.

The points for insulation A34 from Figure 5.2 were also loaded into Mathemat-
ica and fitted with a fourth degree polynomial. The resulting fitted polynomial
was

Trise(Pin) = −0.451Pin + 0.0434P 2
in − 0.000358P 3

in + 4.31 · 10−6P 4
in (5.6)

and the graph is shown in figure 5.3. If one extrapolates this result beyond the
range of the experiments, one arrives at temperature rise of 1.12 K for a power
deposition of 19.3 mW/cm3. This is more than four times higher than the limit
proposed in the LHC design report [13]. However, this extrapolation is not very
trustworthy, because the transition temperature at 2.167 K where helium goes
from superfluid to fluid is passed. Normal fluid helium has a lower heat transfer
coefficient, lower heat capacity and lower thermal conductivity than superfluid [10],
meaning that the helium will take less heat away from the cable. Thus the real
value of the power input should be lower than 19.3 mW/cm3. But even if one
does not fully trust the extrapolation, it is clear that 12.4 mW/cm3 only causes a
temperature rise of 241 mK. This power is three times higher than the 4 mW/cm3

that according to [13] should cause a rise of 1 K. The real quench limit derived
from the experiment in [25] should thus be somewhere between 12.4 mW/cm3 and
19.3 mW/cm3.

A closer investigation showed that this discrepancy between [13] and [25] can
be explained by the fact that before the experiments were done, it was postulated
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as a requirement on the machine performance that a power input of 4 mW/cm3

should not cause a higher temperature rise in the conductor than 1 K. After that
the experiments in [25] were performed in order to confirm that this requirement
was met. And these experiments showed that the thermal characteristics of the
cable and insulation were actually even better, but the original number remained
in the LHC design report in order to impose extra safety margins [37].

There are some uncertainties in the experimental results that could motivate
the extra safety margins. First of all, the cooling conditions were not exactly the
same as in the real dipole magnet. In the experiment, the cables were completely
surrounded by a large helium bath with a temperature close to constant. In the
LHC cables, the flow of helium around the cables is limited and therefore less
efficient. On the other hand, in the experimental setup there were no helium
channels inside the cables — they were made of solid stainless steel. Just the
surface of the plates was machined to resemble the real cable. These two effects
could change the temperature rise a little in both directions. Also the shape of the
cable is not exactly the same as the shape of the one in the experiment. As can
be seen in figure 2.6 the transverse cross section of the cable is not symmetrical —
the end facing the beam pipe is thinner than the outer end. This was not the case
in the experiment. How this would influence the thermal behaviour is not clear,
but it should not make a major difference.

On the other hand, a recent calculation of the critical temperature in the
magnet shows that the magnet should be able to stand more than the 1.4 K
mentioned above [26]. This calculation is described in Section 5.3 and shown in
figure 5.6. This should slightly increase the quench limit, but it is very hard to
say quantitatively how much, since the curve in figure 5.2 cannot be extrapolated
because of the phase transition of helium. But due to the worse heat transfer
characteristics of helium above the phase transition described above, the gain is
probably small.

Another thing worth noting is that the magnetic field in the coils decreases
close to the ends of the magnet, thus increasing the quench margin. However, the
helium cooling is not as efficient as in the centre due to the gluing of the end caps,
which all in all makes the quench limit lower. But the losses from BFPP hit at 1/3
of the magnet length, so this issue is not a big concern in the context of BFPP.

The conclusion of the study of the quench limit is that there is a large un-
certainty in the function PHe(T (x, t)). The best approximation available comes
from [25]. But some uncertainties exist that could motivate extra safety margins.
However it is very unlikely that the quench limit has to be decreased as much as to
the number given in [13]. In order not to have a too pessimistic limit, 10 mW/cm3

was proposed by [37].

5.2 Conclusion for the steady state case

As was concluded in Section 5.1, the appropriate mesh for studying steady state
losses has no radial binning. And as was shown in Section 4.4, the maximum
for this type of mesh converges to 7.2 mW/cm3. Comparing this value with the
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Figure 5.4. The power density in the hottest cable from the FLUKA simulation (top)
and the resulting temperature profile (bottom) if no longitudinal heat conduction is taken
into account.

suggested quench limit of 4.5 mW/cm3 in [13] directly, it is clear that the power
deposition is too high. However, as was discussed in Section 5.1, there are strong
reasons to believe that this limit is too pessimistic.

A first rough estimate of the temperature profile caused by BFPP can be made
directly with the data from figure 5.2. If the longitudinal heat flow is neglected at
first, each data point in the FLUKA output can be used as input to the correct
function in this figure, which will return the temperature rise at that point. This
has been done for the hottest cable in figure 5.4. In the upper part, the power
deposition scored with the old mesh is shown, and in the lower part the resulting
temperature profile. As can be seen in the figure, the maximum temperature rise
is only around 60 mK, which is an order of magnitude below the temperature
margin of 1.12 K quoted in [13]. And so far no longitudinal heat flow has been
taken into account.

A better estimate of the temperature profile is obtained through the solution
of the full heat flow equation in steady state, that is equation 5.5 with ∂T/∂t =
0. As explained in Section 5.1, strong reasons exist for reducing the heat flow
equation to only one direction. The function Ploss(z) can be taken directly from
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the FLUKA output and the function PHe(T ) is given by the curve for insulation
A34 in figure 5.2.

However, even when solving the one-dimensional equation, numerical difficul-
ties arise due to limited numerical precision. In order to demonstrate this, and
also to investigate the qualitative effect of the heat transfer and see if it is worth
writing a special numerical integrator for the heat flow equation, a very simpli-
fied model can be considered. The maximum power deposited in the cable is 7.2
mW/cm3, but the shape of the curve for the power deposition as a function of z
is rather complicated. In this oversimplified model the power deposition along the
1460 cm cable was approximated as a square function with the same integral of
1.22 W as the original FLUKA curve:

Pin(z) =







0 mW/cm3, 0 ≤ z < 645 cm
7.2 mW/cm3, 645 ≤ z < 815 cm
0 mW/cm3, 815 ≤ z ≤ 1460 cm

(5.7)

The sharper distribution concentrates the heat more in the cable, which together
with the fact that this distribution was placed in the middle of the cable makes
the heat flow more important. In order to make the helium cooling less important
it was modelled as a straight line

PHe(T ) = P0T mW/cm3 (5.8)

with initially P0 = 50 mW/cm3K if T is the temperature rise and not the absolute
temperature. Also the heat conductivity of the cable has to be taken into account.
This is the weighted sum of the conductivities of copper and NbTi, with the copper
to NbTi ratio 1.65 [7]. The heat conductivity for NbTi at temperature T is given
by [40]:

kNbTi = 7.5 · 10−3 · T 1.85 mW/(cmK) (5.9)

The heat conductivity for copper is not such a straight forward expression. At
temperature T and magnetic field B it is given by [40]:

kCu =
2.44 · 10−8 · T

ρCu(RRR, T, B)
mW/cmK

ρCu(RRR, T, B) = (1 + r)

(

ρi + ρ0 + 0.4531
ρiρ0

ρi + ρ0

)

ρ0 = 15.53 · 10−9/RRR

ρi =
1.171 · 10−17 · T 4.49

1 + 4.498 · 10−7 · T 3.35 · exp(−(50/T )6.428)

ln r = −2.662 + 0.3168 lns + 0.6229(lns)2 − 0.1839(ln s)2 + 0.01827(ln s)4

s =
15.53 · 10−9 · B

ρ0 + ρi + 0.4531 ρiρ0

ρ0+ρi

(5.10)
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Here ρCu is the resistivity and RRR the residual resistivity ratio. This is a dimen-
sionless parameter and a measure of the impurity of the specific material sample.
For the copper in the LHC dipole cables, RRR = 250 [13]. In the simplified model,
the heat conductivity was assumed to be constant. And in order to overestimate
the influence of heat conduction compared with convection through helium this
constant was chosen to be

k = 80 mW/(cmK), (5.11)

which is higher than all the real values in the actual temperature range and the
real magnetic field in the coil, which is roughly between 1 and 8 T.

Putting equations 5.7, 5.8 and 5.11 into the heat flow equation (5.5) with
∂T/∂t = 0, the following differential equation is obtained:

k
d2T

dz2
− P0T = −Pin(z) (5.12)

Worth noting is that T in this equation is actually the temperature rise and not
the absolute temperature due to the definition of Pout. Equation (5.12) has the
same form as for instance the Schrödinger equation for a free particle encountering
a potential barrier and its solution is well known:

T (z) = Cie

q

P0

k
z + Die

−

q

P0

k
z + Pin(z)/P0 (5.13)

Here Ci and Di are integration constants. The index i = 1, 2, 3 is needed to dis-
tinguish the three zones determined by Pin. So in total there are six integration
constants that need to be calculated through boundary conditions. Four boundary
conditions are, just as in the case of the Schrödinger equation, given by the con-
straint that T and dT/dz must be continuous at z = 645 cm and z = 815 cm. Yet
another way of increasing the importance of the heat flow is to also demand that
the edges of the cable at z = 0 should be kept constant at the bath temperature
T = 0. In reality it is not that simple: since the cables are wound in several turns,
a more realistic boundary condition would be to demand that the end temperature
of one cable should equal the temperature in the beginning of the next cable on
the other side of the beam pipe and so on, which requires that the heat equation
is solved in all cables, which is not done in this simplified model.

The above mentioned boundary conditions give in total six equations that allow
the integration constants to be determined numerically. However, when attempt-
ing to solve the equation system with the initially proposed k = 80 mW/(cmK)
and P0 = 50 mW/cm3K numerical difficulties arise due to limited precision. This
is due to the fact that for these values the resulting temperature profile is very
similar to the profile one would arrive at without any heat flow—that is, the so-
lution of equation (5.12) if k = 0 mW/cmK. As can be seen by inspection, this
profile is also a square wave with height 7.2/P0 = 0.144 K.

If one gradually increases k the heat flow slowly becomes important and starts
influencing the shape of the temperature profile. This is shown in figure 5.5, where
the solution to equation (5.12) is shown for several values of k. As can be seen



5.2 Conclusion for the steady state case 61

Figure 5.5. The temperature rise in the cable for different values of the thermal con-
ductivity k[mW/(cm K)] calculated with the simplified model of the energy deposition
and transfer.

in the figure, the heat conduction does not lower the maximum temperature in
the cable significantly until k becomes very large. For k = 200000 mW/cmK the
maximum temperature in the cable has decreased with roughly 20%. Such large
values of k are totally unrealistic, even if the temperature varies and the magnetic
field changes. And one should also bear in mind that the heat conduction was
consequently overestimated and the heat transported away by the helium under-
estimated in the rough approximations in this very simplified model. Therefore it
can be concluded that the longitudinal heat conduction is negligible as source of
heat removal when compared to the convection through the helium. It is a very
good approximation to simply solve the equation PHe(T ) = Pin(z), which was
done in figure 5.4, and it is not necessary to solve the full heat flow equation. Here
the maximum temperature rise in the hottest cable is 60 mK and taking into ac-
count the heat conduction along the cable does not change this value significantly.

The uncertainty lies instead in the function PHe(T ) which is not well known
but where the best existing estimate is given by [25] as explained in Section 5.1.
Although some extra safety margins should be taken into account, it is however
unlikely that the actual temperature rise is an order of magnitude higher. Thus
it can be concluded that the risk of quenching the magnet with losses from BFPP
in steady state is very small, if one trusts the FLUKA simulation.

It is also worth mentioning that by the time of writing, the need of a deeper
understanding of the quench limit of the LHC magnets has become clear to more
and more people at CERN. Therefore, the magnet division at CERN has started
the development of a computer code that simulates the temperature rise due to
a power input inside an LHC cable. It is to be hoped that this project will be
successful and that it will bring more clarity also to the possible quenches due to
the BFPP process.
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Another uncertainty is that the 7.2 mW/cm3 calculated in Section 4.4 has an
error bar which is very difficult to estimate. Because of numerical errors, possible
errors in the physics models used and approximations of these models, this number
can not be fully trusted. FLUKA specialists [33] suggest a safety margin of a factor
two. This would mean instead a maximum power density of 14.4 mW/cm3, which
when used as input to the curve in figure 5.2 instead gives a temperature rise
of 0.39 K. But in order to arrive at this value extrapolation must be used. A
temperature rise of 0.39 K means a final temperature of 2.29 K, which is above
the lambda point for helium at 2.167 K. At this temperature and atmospheric
pressure, helium undergoes a phase transition from superfluid to fluid, meaning
that some extra energy is needed to make the transition but also that the heat
capacity drastically decreases afterwards. The total effect could be that the final
temperature is higher. A power density of 14.4 mW/cm3 is also above the limit
suggested by [37].

Yet another uncertainty factor lies in the radial averaging of the power input,
which is necessary in order to compare with the experiments done in [25]. If instead
the maximum power deposition of 13.5 mW/cm3 is taken, and one also takes into
account the safety margin of a factor two, it is clear that the magnet is probably
over the quench limit.

So although a magnet quench due to BFPP is not likely to occur, it is impossible
to exclude one due to the uncertainties in the quench limit and the simulation
result itself. So far it has also been assumed that only the BFPP process causes
ion losses at this particular spot. If other physical processes cause more power to
be deposited in the coils, there danger of a possible quench increases. Therefore
it is very important that more work is carried out in order to determine the effect
of other loss mechanisms, that at a first glance may seem less dangerous.

There are however some safety measures that can be taken in order to further
lower the risk of a quench. First, it could be possible to change the shape and size
of the footprint of the beam impinging on the beam screen. The beam will crash
in a dispersion suppressor dipole, and between this magnet and the interaction
point there are some other magnets whose fields could be adjusted. First, the
main quadrupoles could be adjusted. These magnets are focussing the beam in
one plane and defocusing in the other. The field in these magnets could be slightly
modified, for instance in order to defocus the beam more in one of the planes. This
would spread out the spatial distribution on the beam screen and therefore also the
distribution of the energy deposition in the magnet, which could help to prevent
a quench. Also the dipole magnets, which bend the beam, could be adjusted a
little, so that the radius of curvature decreases. This would make the secondary
beam crash further down in the beam line instead, for instance in a quadrupole
magnet. A quadrupole magnet has a higher temperature margin than a dipole
and can therefore withstand more heat before it quenches.

Also the beam screen could be modified. The main function of the beam screen
is to shield the coils from the synchrotron radiation created by the charged beam.
But if the beam screen is made thicker, a larger amount of the energy carried
by the ions will be deposited in there instead, and if it is made thick enough, it
will absorb so much heat that a quench can be avoided. The problem is that if
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the beam screen is made thicker, the beam pipe will be smaller, and the particles
propagating through it will be closer to the walls, resulting in more interactions
with the beam screen through for instance induced currents. Maybe there could be
some way of keeping the cross sectional area of the pipe constant while increasing
the thickness of the beam screen. However, such modifications are difficult and
expensive to implement, since they require changes in the magnet design. In order
to tell exactly how the beams would be affected by a thicker beam screen, one
would have to do deeper studies which are beyond the scope of this report.

Last, as can be seen from equation (4.1), the power deposited into the coils de-
pends linearly on the luminosity and the cross section for BFPP. The luminosity is
the parameter in the equation that is easiest to change, since it is a design param-
eter of a collider that can be changed or lowered according to the technical limits
discovered during the construction or the operation. Reducing the luminosity by
some factor would reduce also the number of ions undergoing BFPP with the same
factor. However, since all other reaction rates also depend on the luminosity, the
interaction rate for the processes that are wanted in order to study new physics
phenomena will also be reduced by the same factor. On the other hand, a lower
luminosity also implies a longer lifetime of the beam (due to the above mentioned
lower interaction rates). The time it takes to fill the LHC is comparable to the
beam lifetime, and therefore the efficiency in wanted interactions per time will
not decrease as much as one first might think. So maybe the luminosity can be
lowered without too high a decrease in the total number of physics interactions.
Further investigations are necessary in order to clarify this issue.

So some possible safety measures exist. A good way to further investigate the
danger of a quench is to look on BFPP on a very short timescale and consider
what happens the first instants of time after the beam has been put into collision.
On a very short timescale, the heat does not have sufficient time to spread along
the cable or to be transported away by the helium. Thus this consideration does
not involve a steady state limit and the function PHe(T ). If it shows consistency
with the results above, it is a good way of confirming the above calculation.

5.3 BFPP Energy deposition on short timescales

In order to validate further the results for the quench limit and the temperature rise
calculated in the previous section, one can take a different approach and consider
a very short time scale after the beam has been put into collision. Since it takes a
certain time for the heat to migrate out of the cable and be conducted away by the
helium, one can choose a timescale so short that one can assume that all deposited
heat stays within the cable and that the flow of heat can be neglected. If a quench
is likely to occur already on this time scale, it is certain that a quench will occur
also if steady state is considered. The opposite is however not true. A similar
calculation has already been performed for homogenous losses of protons [7], and
this section will follow this calculation in broad outline but with some appropriate
modifications and also improvements.

In order to understand if a magnet quenches or not on a short time scale, one
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Figure 5.6. The temperature margin in K up to a quench in the coils of an LHC dipole
magnet as calculated by [26].

must calculate the temperature rise caused by the energy deposition and then
compare it with the minimal temperature rise that brings the superconductor
outside the critical surface at the present magnetic field and current, as explained
in Section 2.3. A detailed map of this temperature margin Tmarg in a fine grid
in the coils has been computed for the nominal magnetic field and current by [26]
and is shown in figure 5.6.

One can note that the minimum temperature margin in this map is 1.8 K. In
Table 7.3 in the LHC design report [13] another number — 1.4 K — is given.
This discrepancy is due to some recent changes in the design of the coils. In
Table 7.3 in [13] also some extra terms are listed, which decrease the temperature
margin. The measurement precision, dissipation and ramping losses mentioned
there, decreasing the margin with in total 0.34 K, had thus to be subtracted from
every point in the temperature margin map given by [26].

The amount of heat required to raise the temperature in the cable by a certain
value is given by equation 5.2. In this case, the wires are almost free to expand
locally since they are surrounded by liquid helium. Thus for the wires the spe-
cific heat at constant pressure, CP , should be used. However, for a limited low
temperature range in metals, CV ≈ CP [7], and the calculations become signifi-
cantly simplified if instead CV is used. Therefore CV will be used throughout the
calculations.

In the superconducting cable, CV is a function of temperature. Therefore the
energy needed to raise the temperature in the superconductor from the normal
working temperature, which is the same as the temperature of the helium bath
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Tbath = 1.9 K to the temperature at the critical surface Tbath + Tmarg is:

Q =

Tbath+Tmarg
∫

Tbath

CV dT (5.14)

Since the coil is made up of several different materials, the total specific heat
of it is a weighted sum of the specific heat for each material. The coils in a
dipole consist of superconducting NbTi inserted in a Cu matrix as explained in
Section 2.1. The copper takes up 56.6 % of the volume and the NbTi 35.4 %.
The remaining 8 % of the volume is taken up by superfluid helium and insulation.
Following [7], the insulation has a specific heat close to that of NbTi and a very
small relative volume. Therefore it contributes very little to the total heat reserve
and can therefore be neglected in this estimation.

The helium on the other hand contributes substantially to absorb the added
heat - in this temperature range the specific heat of helium is orders of magnitude
larger than the one of NbTi. So although it only occupies 5 % of the volume it
has to be taken into account. However, if very short timescales

t ≪ 8 · 10−3s (5.15)

are considered, as pointed out in [7], the heat does not have enough time to spread
to the helium, since the flux of heat from the wire to the helium is limited. Thus,
when looking at for instance the very first 100 µs, a timescale proposed by [41]
which fulfils the restriction (5.15), the influence of the helium can be neglected.

Therefore two different timescales can be considered — first the 100 µs scale,
where the helium does not contribute, and then the 8 ms scale, where also the
helium contributes. This corresponds to the cases a) and c) in [7].

5.3.1 Calculation without helium

The specific heat for copper at low temperatures can be described as a sum of a
term proportional to T and another one proportional to T 3. The linear term is con-
nected to the free conduction electrons, which can be calculated within the Fermi
free electron model, and the cubic one to the phonons, which can be calculated
using Debye theory [9]. Thus, the specific heat of copper can be parameterized as

CV,Cu = γCu · T + αCu · T 3 (5.16)

where

γCu = 9.686 · 10−2 mJ/cm3K2

αCu = 6.684 · 10−3 mJ/cm3K4

according to [7].
More care needs to be taken in order to find the specific heat for the supercon-

ducting NbTi. The electronic heat capacity changes in the superconducting state,
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since some other effects, which cannot be described within the free electron model,
come into play. The conduction electrons bound in Cooper pairs no longer con-
tribute to the heat capacity. This has been thoroughly investigated in theoretical
papers, see for instance [42], and here only the result will be used. The specific
heat for the superconducting NbTi is

CV,NbTi = γNbTi ·
B

Bc2(0)
· T + αNbTi · T

3 (5.17)

where

γNbTi = 0.87 mJ/cm3K2

αNbTi = 4.464 · 10−2 mJ/cm3K4.

Furthermore, B is the magnetic field and Bc2(0) = 14 T is the second critical field
at T = 0.

The total specific heat is then obtained by weighting CV for Cu and for NbTi
according to their relative volume fractions:

CV,tot,noHe =
CV,Cu · VCu + CV,NbTi · VNbTi

VCu + VNbTi

(5.18)

So the energy required to raise the temperature to the critical surface is, with
use of equation (5.14):

Q =

Tbath+Tmarg
∫

Tbath

CV,tot,NoHe dT (5.19)

Thus, with a working temperature of Tbath = 1.9K an energy margin — that is
the maximum energy per volume that can be added before the magnet quenches
— was calculated for every point on the temperature margin map. The minimum
energy margin in the whole magnet was found to be 1.636 mJ/cm3.

Now this margin has to be compared with the energy deposited by the lost
ions. When considering a very short timescale, as stated in [7], the heat does not
have sufficient time to migrate radially through the wire. This means that the
correct value of the energy deposition to compare with is the very peak of the
energy deposition as a function of radius at the hottest longitudinal coordinate,
and not the radial average. According to Section 4.4, this value converges to 13.5
mW/cm3. If this power is deposited in the coil during 100 µs, 1.35·10−6 J/cm3 is
deposited in the hottest part of the magnet. This is three orders of magnitudes
below the lowest energy margin. Thus it can be concluded that there is no risk of
the heat deposition from BFPP quenching the magnets on the 100 µs timescale.

Indeed, even if the high heat capacity of the helium is not taken into account,
and it is supposed that the highest energy density is deposited in the weakest part
of the coil, the wire itself could stand this power for

1.636 mJ/cm
3

13.5 mW/cm3 = 0.12 s (5.20)

which gives plenty of time to dump the beam.
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5.3.2 Calculation with helium

If one considers timescales large enough to allow heat to flow from the wire to the
helium, but not large enough to let the heat be transported away by the helium
flow, then also the specific heat of the helium has to be taken into account. The
total specific heat of the cable is then

CV,tot,He =
CV,Cu · VCu + CV,NbTi · VNbTi + CV,He · VHe

VCu + VNbTi + VHe

(5.21)

and the energy needed to raise the temperature to the critical value is

∆Q =

Tbath+Tmarg
∫

Tbath

CV,tot,He dT

=
VCu + VNbTi

VCu + VNbTi + VHe

·

Tbath+Tmarg
∫

Tbath

CV,tot,noHe dT

+
VHe

VCu + VNbTi + VHe

·

Tbath+Tmarg
∫

Tbath

CHe dT. (5.22)

The first integral was already calculated in the previous section. It only has to
be summed up with the second integral with the appropriate weights.

The second integral is more problematical to evaluate. The specific heat of
liquid helium as a function of the temperature has a complicated shape. In [7]
the integration was performed using tabulated data for CP in the approximation
that the density was constant. In this report a different approach was used. The
specific heat was calculated with the software HEPAK 3.4 [43] instead to achieve
much higher accuracy.

For superfluid and fluid helium, CV and CP are qualitatively different, which
can be seen in Figures 5.7 and 5.8, so the choice really matters and is not obvious.
Although the cables are under high pressure inside the cryostat, the superfluid
helium is at atmospheric pressure, since it can flow without resistance through the
microscopic channels. Thus the helium starts at 1.9 K and approximately 1 atm
before the heat deposition. The density of helium at this pressure and temperature
is 0.147 g/cm3 [7]. In Figure 5.8, CV is shown as a function of temperature at
this constant density. And in Figure 5.7, CP as a function of temperature at
constant pressure 1 atm is shown. Both curves were calculated using HEPAK up
to 9 K. It is worth noting, that in the CV curve there is only one phase transition,
between fluid and superfluid, whereas there are two transitions in the CP curve.
If the pressure is kept constant the transition to gas can also be seen. The phase
transitions are the peaks in the diagrams — when the curve is integrated over a
peak, the integral has a large value corresponding to the energy needed for the
transition.
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Figure 5.7. The specific heat CP [J/(cm3 K)] at constant pressure 1 atm as a function
of temperature [K].

Figure 5.8. The specific heat CV [J/(cm3 K)] at constant density 0.147 g/cm3 as a
function of temperature [K].
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For a correct choice of integration path in the P − V plane, the underlying
physical processes have to be investigated in more detail. The cable is surrounded
by an insulation which can stand some pressure but, if the pressure becomes
too high, helium will evaporate out through the insulation. A fair model would
thus start the integration at constant volume but then, at the maximum pressure
Pc that the cable insulation can stand, switch to an integration with constant
pressure. If the temperature of the helium is T (Pc) at this critical pressure, the
second integral in equation (5.22) becomes

Tbath+Tmarg
∫

Tbath

CHe dT =

T (Pc)
∫

Tbath

CV,He dT +

Tbath+Tmarg
∫

T (Pc)

CP,He dT. (5.23)

The value of Pc is not known and is very hard to estimate. The only hints
known are observations in some experiments that thin films of helium actually
starts to boil close to the cable surface at quite low temperatures well included
on the temperature axis in the shown diagrams [44]. This means that the critical
pressure is well below the final pressure at 9 K in the CV diagram, which according
to the HEPAK calculation is 34 atm. It seems plausible that the cable could not
hold this pressure inside.

In [7], the specific heat for helium was integrated from the bath temperature
at 1.9 K to three temperatures — 2.168 K (the lambda point), 2.8 K and 9 K. In
order to compare with these results, the specific heat for helium was integrated
between the same points for several different cases: The extreme cases with only
CV or only CP all the way, and several cases starting with CV , and then when a
critical pressure is reached, switching to CP . The CP integration has to start at
the pressure and temperature where the CV integration stopped. Thus a different
CP had to be calculated for each critical pressure. The values of CV and CP in
units of J/(K cm3) were calculated every 0.1 K from 1.9 K to 9 K using HEPAK
and then put into Mathematica c© [34]. There the points were linearly interpolated
to a continuous curve that could be numerically integrated. The achieved values
are given in Table 5.1 together with the reference values from [7].

The highest energies are obtained for critical pressures between 6 and 10 atm.
This is due to the fact that the specific heat is a lot lower for gaseous than for
liquid helium. So if, for instance, CP is integrated all the way, the helium is in
gaseous state over a larger temperature range where it does not absorb a lot of
energy. If the critical pressure is increased, also the boiling point is increased, and
the temperature range where the helium is in gaseous state decreases, thus yielding
a higher value of the integral. On the other hand, if the critical pressure is set
to infinity, that is CV is integrated all the way, the helium does not start to boil
before 9 K. This means that it does not go through the second phase transition
where a lot of energy is needed, thus lowering the value of the integral again. So
the maximum energy needed should be at a critical pressure where the boiling
point is displaced to a position right before 9 K.
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Pc [atm] Integral to 2.167 K Integral to 2.8 K Integral to 9 K

1 0.22 0.46 1.40
2 0.22 0.44 2.41
5 0.22 0.44 3.96

6.25 0.22 0.44 4.07
7.5 0.22 0.44 4.09

8.125 0.22 0.44 4.07
8.75 0.22 0.44 4.04
10 0.22 0.44 3.97
20 0.22 0.44 3.31
∞ 0.22 0.44 2.67

Report 44 [7] 0.23 0.58 6.3

Table 5.1. The energy values obtained by integrating the specific heat as shown in
equation (5.23) up to three different temperatures. Pc is the pressure where the helium
is assumed to start leak out through the cable insulation. At a critical pressure of 1 atm,
CP is used through the whole integration, and at a critical pressure of ∞ only CV is
used. The last line gives the values calculated in [7].

As can be seen in table 5.1, the integrated energies do not differ substantially at
the lower integration boundaries depending on whether CV or CP is chosen. But
the integral to 9 K varies a lot depending on how the critical pressure is chosen.
Especially worth noting is the large value that was obtained in [7]. Regardless
of how the critical pressure is chosen (the true value is not known as pointed out
above), it is not possible to get a value as high as this using the HEPAK data. The
discrepancy comes from the fact that a less accurate method was used in [7] due to
lack of data. The integral up to 9 K comes in to play when looking at quench limits
for the injection energy (450 GeV for protons), and the results above thus imply
that the magnet will quench more easily than was earlier thought for this type
of loss. Depending on the true value of the critical pressure, the energy that the
helium can absorb should be decreased by at least a factor 1.5. In reality it may
also well be the case that the process follows a different path in the P − V plane,
where none of these variables is constant. An investigation of this case is however
beyond the scope of this text.

For the present problem with BFPP, it is not necessary to know the exact
value of the critical pressure, and the lower temperature range, where the results
are consistent, is the one of interest. In order to have safety margins, the most
pessimistic case can be chosen, which is the case where CP is integrated all the way.
Physically, this would mean that the helium would start to leak out through the
cable insulation as soon as it is heated, which is not the case in reality. However,
choosing this integration path gives a pessimistic estimation.

So using equation (5.22) and CP for helium an energy margin was once again
calculated for every point in the coils. It was found that the minimum energy
margin in the magnet was 34.9 mJ/cm3. When considering this slightly larger
timescale, the relevant value of the power deposition is not the peak value, but the
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radial average, since the heat has sufficient time to migrate radially in the cable [7].
This is, as mentioned earlier, 7.2 mW/cm3 in the hottest part of the coil. Thus,
during 8 ms, the energy density deposited in the cable is 7.2 · 8 · 10−3 = 0.0576
mJ/cm3. This is again orders of magnitude below the quench limit, so there is
no risk quenching the magnet on this timescale either. So, even if the maximum
energy density was deposited at the weakest spot in the magnet, it would still take

34.9 mJ/cm3

7.2 mW/cm
3 = 4.85 s. (5.24)

before the magnet would quench.
The conclusion that can be drawn is that the magnet will not quench due to

BFPP before the cooling system comes into play. This is consistent with the result
for the steady state case. Since it will take seconds before enough heat to induce
a quench is accumulated even without helium flow, it will take much more time
when this cooling is present. So if the magnet would after all quench in steady
state, it will be a slow process where more and more heat is accumulated in the
magnet over time, provided that no other processes increase the heat deposition.
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Chapter 6

The beam loss monitor
system

In order to protect the magnets from quenches caused by beam losses, that in
the worst case could even damage the magnets, a beam loss monitor system will
be installed around the LHC [28, 11]. The system will consist of small ionization
chambers that will be placed just outside the cryostat. These beam loss monitors
(BLMs) will detect secondary particles from the showers induced by beam losses.
The correlation between the signal in a BLM and the energy deposited in the
magnet coils has been determined for protons through simulations [28]. If the
signal corresponds to a too high energy deposition, a signal will be given to the
beam dump system, which dumps the beam within one turn.

For lead ions however, the correspondence between the signal in the BLM and
the energy deposition in the magnet was not known. Because of the physical
reasons explained in Section 2.6, the ions deposit more energy per volume before
the nuclear breakup. This could mean that the same amount of detected shower
particles outside the cryostat corresponds to a higher energy density in the coils
in the case of ions. In order to investigate this problem more closely, FLUKA
simulations were performed in order to determine whether the present design,
optimized for protons, also could be suitable for lead ions.

6.1 Ionization chambers

An ionization chamber is a cavity filled with a gas that is kept between two elec-
trodes [46, 12]. A high voltage is applied to the electrodes in order to create an
electric field inside the chamber. If a charged particle passes through, it will ionize
the gas. The energy needed to do this is taken from kinetic energy of the particle
and is normally very small — typically a particle loses a few keV per centimetre
gas it passes [46]. Because of the force from the electric field, the created ions will
drift to the cathode and the electrons to the anode. This will induce a current
that gives the signal that a charged particle has passed the detector.

73
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Figure 6.1. One of the ionization chambers that will be placed around the LHC ring in
order to monitor the beam losses.

Figure 6.2. Schematic view of an ionization chamber. The figure is taken from [45].
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Figure 6.3. Schematic view of readout chain for the LHC beam loss monitor system.
The figure is taken from [45].

The ionization caused directly by the charged particle is called primary ioniza-
tion. Here one or more electrons are freed from a gas atom by the passing particle.
Most of the electrons and ions that reach the poles are however created by sec-
ondary ionization. This occurs when the electrons created by primary ionization
in turn collide with other atoms and ionize them. If the detector is built in such a
way that the electrical field is strong enough to accelerate the free electrons to a
sufficiently high energy, this process can grow exponentially, with more and more
electrons ionizing more and more atoms. For instance, if the anode is replaced by
a thin wire, the cylindrical geometry will imply a 1/r dependence for the electric
field, so the field is very strong close to the wire. Thus, the process will accel-
erate the closer the electrons get to the anode and induce a so-called avalanche.
This effect can amplify the originally quite weak signal by as much as 104 to 106

times [12].

Secondary ionization can also take place if the charged particle passing through
the gas excites an atom, which in turn ionizes another atom during its de-excitation.
Sometimes there are two gases in a detector — one that is meant to capture energy
from the passing particles through nuclear excitation, and another gas, called the
quencher, that is meant to de-excite the first gas and produce electrons and ions
that in turn induce the current.

The LHC beam loss monitor system consists of cylindrical ionization chambers
filled with N2 [11]. They are 19 cm long and have a surface of 80 cm2. The applied
voltage can be varied between 800 V and 1800 V. In order to minimize the drift
time of the ions and electrons created in the chamber, and thus make the system
respond faster to beam losses, there are 31 parallel plates inside the cylinder with
alternating polarity. The distance between the neighbouring plates is 6 mm.

The signal from the beam loss monitors goes first through the analog front end
electronics, where it is converted into a digital signal that continues to a threshold
controller, which is located in a surface building. The threshold controller checks
the integrated signal on different timescales and is programmed to calculate the
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actual energy deposition in the coil from this. The correlation between the power
losses in the magnet coil and the signal from the BLM induced by shower particles
was determined through simulations in the case of protons [28]. If the power
density is found to be too high, either a warning or a signal to dump the beam is
sent to the beam abort system. Then the beam will be extracted from the main
LHC ring and deposited in a beam dump.

For a closer description of the readout electronics see [11] and for the beam
abort system see chapter 17 in [13]. A picture of one of the ionization chambers
can be seen in figure 6.1, and a schematic view of the detector and the whole
readout chain can be seen in figures 6.2 and 6.3.

6.2 Simulation setup

The most straight-forward way of finding out if the setup for protons is suitable
also for ions is to simulate the impact of both ion and proton beams in an LHC
magnet and then compare the ratio between energy deposition in the coil and in a
detector outside the cryostat for both particle types. The energy deposition in the
BLM is approximately directly proportional to the output signal. The particles
hitting the BLMs have a low energy, so the dominating source of energy loss in
the gas is ionization, which in turn gives rise to the output signal. The model
of the BLM does not need to be exact in this case, since the ratio and not the
absolute number is the interesting quantity. In [11] the BLMs were modelled as
thin rectangular chambers with iron walls filled with N2. This is not the real
shape, but this approximation is good enough also for this purpose.

For convenience, the dipole model from the simulation of the BFPP shower
was used again, with the modelled BLMs added outside the cryostat. The trans-
verse cross section of the computer model is shown in figure 6.4. Also the same
magnetic field map was used. At first one might suspect that this fieldmap, which
only covers the cold mass, is not precise enough, since the particles giving rise to
the signal in the BLMs have to traverse the void outside the cold mass, where
there is a weak magnetic field, on the order of µT. This field could bend low en-
ergy charged particles in such a way that the signal changes. Therefore a larger
magnetic fieldmap extending 30 cm outside the cryostat was obtained from [26].
However, two otherwise identical FLUKA simulations showed that this difference
is negligible. Therefore the smaller fieldmap was used in the following simulations,
because the tracking in FLUKA is faster and more accurate in regions without
magnetic field.

The biasing requires some closer attention. The biasing used in the BFPP
simulation was set up to produce a very accurate scoring in the coils and a lot less
accurate one in the outer regions of the dipole. Thus this biasing introduces a large
uncertainty in the particle flux in the BLM and is therefore not appropriate. On
the other hand, if the biasing was tuned to set the priority on the BLM, the scoring
in the coils would be inaccurate. And an unbiased simulation would require far
too much computer time. The found solution to the problem was to run every the
simulation twice — once with the old biasing, which is accurate in the coils, and
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Figure 6.4. The transverse cross section of the computer model of the dipole with the
BLMs.

once with a new biasing, which instead is accurate in the BLMs. Then the energy
deposition in the coils could be taken from the first simulation and the deposition
in the BLMs from the second one.

The new biasing applied was based on the same idea as the one described in
Section 4.3. The regions were divided into four different importance classes with
the same biasing parameters as in table 4.1, but this time the most important
regions were the BLMs themselves and the air around them, the second class
consisted of the cryostat wall, the air inside and the yoke, the third class was the
remaining inner parts of the magnet and the fourth class, finally, consisted of the
tunnel and the tunnel wall.

So four different FLUKA runs had to be performed — both 7 TeV protons and
2.76 TeV/nucleon lead ions with the two different biasing settings. The beam used
was a pencil like beam—that is, all particles hit in the same point, in this case
at z=0 in the beginning of the magnet at an azimuthal angle of −π and with an
incident angle of 25 mrad. A pencil beam is the simplest type of beam to simulate
and the same beam that was used in [11]. Using the same shape and composition
of the BLMs and the same beam, the FLUKA simulation will be easier to compare
with [11]. The pencil beam, used as a δ-function, can symbolize any beam loss. It
is very unlikely that the change of beam distribution should substantially change
the ratio between energy deposition in the coils and in the BLMs.

The scoring was again done with the USRBIN card recording energy deposition.
In the simulations with biasing priority on the coils, the old mesh described in
table 4.2 was used. And in the simulations with the priority set to the BLMs, a
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cartesian mesh with ∆z = 5 cm and ∆x = ∆y = 1 cm was set up in both BLMs
throughout the full length of the magnet.

6.3 Results

In figure 6.5 the results from all four FLUKA simulations are shown. The curves
have quite similar shapes. This becomes even more clear when regarding figure 6.6,
where the function

f(z) =
Eions,coil(z)/Eions,BLM(z)

Eprotons,coil(z)/Eprotons,BLM(z)
(6.1)

is plotted. Here E is the energy deposition per volume and primary particle.
As can be seen in the figure, this curve is fluctuating around 1 or even below,
meaning that the ratio between energy deposited in the coil and in the BLMs is
approximately the same for ions and protons. The peak in the beginning of the
curve is clearly a statistical fluctuation. It is also not as important as one might
think, since figure 6.5 shows that the absolute maximum for both curves, which is
the critical part for determining quenching, is located at z=25 cm.

It is clear from figure 6.5 that the shapes of the curves for ions and protons
do not differ much. Physically, one might expect a difference, since the ions have
much higher cross sections for electromagnetic interactions as described in Sec-
tion 2.6. So before the nuclear breakup, the ions should lose their energy faster,
thus increasing the top value in the coils. But in figure 6.5 this first large energy
loss can not be seen.

The explanation is that the ion beam hits the pipe with a very small angle
around 25 mrad. Therefore the peak in the energy deposition from before the
nuclear fragmentation is already in the beam screen and because of the angle
it never reaches the coils. A new set of FLUKA simulations, where the energy
deposition also in the beam screen was scored, confirms this. The result for both
ions and protons is shown in figure 6.7. The curve for protons was scaled with
the energy ratio 2.76/7 between ions and protons and then multiplied with the
number of nucleons, 208, in one lead ion in order to simplify the comparison. The
resulting number of protons to compare with is 82.

So the conclusion of the simulation is that the lead ions and protons at LHC
energies will have the same energy to signal ratio, meaning that the thresholds
for the BLMs do not need to be changed. However, this conclusion is based also
on the assumption that the losses for ions and protons occur in the same places
around the LHC, since there is a certain spacing between the BLMs. For instance,
at the spot where the lost ions from BFPP hit, there is no BLM placed in the
present design. This means that the BLM catching the traces from BFPP will be
too far away and therefore not make a correct estimation of the power deposition
in the coil. Therefore, in order to safely operate the LHC, it is essential to place a
BLM at this spot but also to investigate other sources of ion losses and trace the
loss locations.
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Figure 6.5. The two upper curves show the energy deposition in the hottest part of the
inner coil for ions and protons, and the two lower curves the energy deposition in the
BLMs.

Figure 6.6. The ratio between ion and proton losses and signals as described by equa-
tion (6.1).
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Figure 6.7. The energy deposition for one ion and 82 protons in the beam screen. In
the very beginning, before the nuclear fragmentation, the energy deposited by the ion is
higher due to the large cross sections for electromagnetic interactions.



Chapter 7

Comparison with
experimental data from
RHIC

RHIC (Relativistic Heavy Ion Collider) [6] is a heavy ion collider situated at the
Brookhaven National Laboratory near New York in the USA. It was put into
operation in year 2000. It is the first large-scale machine ever capable of colliding
ultra-relativistic heavy ions. RHIC consists of two six-fold symmetric storage rings,
called the blue and the yellow ring, which are located at ground level and have
a circumference of 3.8 km. Two ion beams are circulating in opposite directions
in the two rings, and they can be brought into collision at six interaction points
around the ring. At four of these points experiments called STAR, PHENIX,
PHOBOS and BRAHMS have been built. The other two interaction points are for
the moment not being used for particle experiments. RHIC has collided a variety
of ions from polarized protons to Au79+ at a maximum energy of 100 GeV/nucleon
for ions.

Also at RHIC, superconducting magnets made of NbTi are being used. How-
ever, there are two separated rings at RHIC, while at LHC there is only one with
both beampipes inside. So the design of the magnets is slightly different since the
magnet only has to accommodate one beampipe. The coils also have only one
layer, while the coils in the LHC dipoles have two. The transverse cross section
of a RHIC dipole magnet can be seen in figure 7.1. The operating temperature of
the RHIC dipoles is 4.67 K and the highest operational magnetic field is 3.46 T.
The fieldmap of a RHIC dipole magnet is shown in figure 7.2.

7.1 The BFPP experiment

When running beams with gold ions at RHIC, the problem with BFPP does not
appear. Since gold and lead ions have almost the same charge, Z = 79 for gold
and Z = 82 for lead, the fractional momentum deviation will be approximately
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Figure 7.1. The transverse cross section of a dipole magnet at RHIC. The beampipe
can be seen in the centre, surrounded by the coil and the cold mass.
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Figure 7.2. A vector plot of the magnetic fieldmap in the x − y plane of the RHIC
dipole.



7.1 The BFPP experiment 83

the same according to equation (2.10). But the beampipe at RHIC has a diameter
of 6.91 cm and is thus larger than the beampipe at the LHC, which is only 4.4
cm, which in turn makes the acceptance of the fractional momentum deviation
higher. This difference among other things turns out to make the wrongly charged
ion beam travel longer inside the pipe and thus be be lost in a more homogenous
way. Thus BFPP was never a critical issue in the runs with Au79+ ions, although
it significantly contributed to the decrease in luminosity with time.

However, in order to study the new state of hadronic matter at RHIC, also
copper Cu29+ were being brought into collision for a few weeks in the beginning
of 2005. Also copper ions undergo BFPP:

63Cu29+ + 63Cu29+ γ
−→ 63Cu29+ + 63Cu28+ + e+ (7.1)

Since the charge of copper is only 29, the fractional momentum deviation due to
BFPP will be significantly larger than in the case of lead or gold. This can be
seen in equation (2.10). And the larger beampipe is in this case not enough to
accommodate this larger momentum deviation. So the copper ions will hit the
beampipe and form a spot.

It is however also worth noticing that the cross section for BFPP at
100 GeV/nucleon is much smaller, only 0.1 barn, than for lead at 2.76 TeV/nucleon,
where σBFPP = 281 barn. This seems plausible when looking at equation (2.4)
and when put into equation (2.1) it means that the rate of wrongly charged ions
impinging on the beam screen is lowered by a factor 2800.

However, the runs with copper at RHIC gave a unique opportunity to actu-
ally measure the effect of BFPP. If the approximate location of the spot in the
beampipe is known, detectors can be placed outside the cryostat to measure the
flux of secondary particles. Then the experimental data can be used first to see if
there are any effects caused by BFPP and then also for a comparison with FLUKA
simulations. Such an experiment was thus performed by a collaboration between
CERN and RHIC teams, where the task treated in this report is to simulate the
shower of secondary particles outside the cryostat in FLUKA.

In order to find the appropriate position for the detectors, a tracking similar to
the one described in Section 2.5 was performed through the RHIC beam optics [47].
This tracking shows that the secondary ion beam will hit the inside of the pipe
135 metres from the PHENIX interaction point. A visualization of this tracking
is shown in figure 7.3.

In order to measure the flux of secondary particles, PIN diodes were strapped
onto the outside of the cryostat on the same side as where the secondary beam
hits. PIN diodes are detectors made of silicon or a similar semiconductor material,
and a voltage is applied between its ends. When a charged particle passes through
the detector, it will ionize the atoms of the diode, which in turn will create free
electrons inside the material. These electrons will move due to the voltage, creating
a small current that can be measured. The used diodes had an area of 1 cm2 and
were placed every three metres around the expected impact position. A photo of
a PIN diode mounted outside the cryostat is shown in figure 7.4.

During operation of the machine, the signals from all detectors were recorded.
The luminosity was varied and, when compared to the signals from the diodes, a
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Figure 7.3. The tracking of the primary and secondary beam at RHIC. The interaction
point is to the right. To the left, the two beams are separated and the secondary beam hits
the pipe after 135 m. The original curved geometry and magnetic field was transformed
to be straight in the computer model. The red line indicates the spot where the secondary
beam hits the inside of the pipe.

Figure 7.4. A photo of a PIN diode mounted on the outside of the RHIC cryostat.
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Figure 7.5. The signals from the different PIN diodes in the RHIC experiment as a
function of time. The black curve is the luminosity. The pin diode at 141.6 m was the
one that gave the highest signal.

clear correspondence was found. This is shown in figure 7.5, which represents the
first measurement ever of BFPP on a high energy collider.

When the luminosity, the black curve, equals zero, the PIN diodes still gave
a signal caused by the background noise. Thus this background level has to be
subtracted from the absolute value of the signal.

7.2 Simulation setup

The BFPP experiment at RHIC gave a unique opportunity to compare the FLUKA
simulations with real data and in this way evaluate the calculations for the LHC.
Thus a simulation of the particle shower caused by the BFPP copper ion beam in
the RHIC magnets was performed.

The calculated impact point at 135 m from the interaction point is in the
middle of a dipole. The transverse cross section of a dipole at RHIC was shown
in figure 7.1. This magnet was modelled in FLUKA, with some simplifications
analogous to the ones made for the LHC dipole. The legs and supports outside
the cryostat were not modelled, neither the cradle assembly inside. These parts
are far from the path of the secondary shower particles and will have little impact
on the energy deposition in the PIN diodes. The coils were also modelled as made



86 Comparison with experimental data from RHIC

Figure 7.6. The transverse cross section of the FLUKA model of the RHIC dipole.

of copper instead of NbTi in a copper matrix and the magnet as straight. This last
approximation is however not as obvious in this case as with the LHC dipole. The
reason is that the cold mass has a different radius of curvature than the cryostat
with a quite large sagitta of 3 cm relative to the cryostat [48]. However, since
the torus is not implemented as a generic body in FLUKA, this is a necessary
approximation. This is however a possible source of errors for several reasons,
which will be further discussed in Section 7.3.

Also the magnetic field of the dipole had to be taken into account. The field was
calculated by [48] and implemented and linearly interpolated in FLUKA through
a Fortran program. The computer model of the dipole is shown in figure 7.6 and
the magnetic fieldmap in figure 7.2. The cross section of the real dipole is shown
in figure 7.1.

The calculated impact point is 4 m away from the end of the dipole magnet.
Since the shower extends further than that, the lattice magnet after the dipole
has to be modelled too. The dipole ends at 139.04 m, then there is a short drift
area and after that a quadrupole starts at 140.6 m. The RHIC quadrupole magnet
is however very similar to the dipole in its shape except for the coils. And the
exact shape of the coils several metres away from the impact point does not play a
significant role in the shower development. Therefore, the quadrupole magnet was
approximated as a copy of the dipole, but without any magnetic field. The field of
the quadrupole outside the beampipe is much weaker than the field of the dipole
and therefore it is a fair approximation to neglect the quadrupole field. Also the
magnetic field in the empty drift area between the two magnets was neglected.
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Figure 7.7. The longitudinal distribution, the number of particles versus impact point,
of the impinging Cu ions at RHIC (left). A schematic picture of how the secondary beam
hits the inside of the pipe (right).

This field is also weaker than the dipole field and it is also not known in detail.
This approximation could however be too simplistic, which is further discussed in
Section 7.3.

The coordinates and momenta of the impinging particles were taken directly
from the tracking. The longitudinal distribution is shown in figure 7.7. In total 500
particles were simulated. The impact angle is distributed around 2.5 mrad to the
beam pipe. However, there is an uncertainty in the initial distribution of the beam
particles. In the tracking program MAD-X [20] that produced the distribution,
all magnetic elements along the beam line are represented by transfer matrices
that transform the beam coordinates and momenta accordingly. In this abstract
description of the collider, the actual geometry of the machine is not present and
all coordinates are given relative to a reference orbit. In an ideal machine, this
reference orbit is in the middle of the beam pipe, but it can be displaced due to
imperfections and small optical errors. If there is an angle between the reference
orbit and the tangent of the beam pipe, also the incident angle of the beam on
the vacuum chamber changes. Also the actual position where the beam hits can
change slightly due to this uncertainty. In a dipole magnet, the field in the beam
pipe is close to homogenous, which means that the transfer matrix does not change
if the reference orbit is slightly displaced from the centre of the vacuum chamber.
At the time of writing the reference orbit was still not known at CERN, and the
large sagitta of the beam pipe relative to the cryostat implies that the effect of
an off-centred reference orbit is enhanced, meaning that the uncertainty in angle
increases.

Also the PIN diodes had to be modelled. This was done geometrically in the
same way as the BLMs were modelled in Chapter 6. They were simulated as
rectangular silicon blocks located outside the cryostat. If they were given the
natural small size of 1 cm2, they would not be useful for scoring due to statistical
fluctuations. The Monte Carlo simulation used can not generate enough statistics
in reasonable computer time to produce data of use for such small detectors.
Therefore the detectors were made larger, extending 10 cm vertically on each side
of the centre of the beam pipe. They were also modelled all along the cryostat
instead of being present only every third metre as in the experiment in order to get
a more complete overview of the physical processes. Since the absolute calibration
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of the PIN diodes is not known, it is not possible to reconstruct their signals in
absolute numbers. However the ratio between the signals from different detectors
can be studied and compared with the simulations. And this ratio will not change
because of the different shape of the diodes in the simulation.

The scoring was performed in the same way as the scoring in the BLMs by the
LHC dipole. The USRBIN card in FLUKA was used to score the energy deposition
in the silicon blocks in a mesh with dimensions ∆z = 5 cm and ∆x = ∆y = 1 cm.
Also biasing had to be used in the simulations, since they would require too much
time and computer resources otherwise. The biasing was done in the exact same
way as for the LHC dipole when the priority was set to the BLMs. The geometry
was divided into four different importance classes with the detectors and the air
around them in the first class, the cryostat, the air inside it and the yoke in the
second class, the inner parts of the magnet in the third class and the tunnel and
wall in the fourth. These importance classes were then assigned biasing parameters
according to table 4.1.

7.3 Results and conclusion

As explained in Section 7.2, the real signal from the PIN diodes is not possible
to reconstruct. But the ratio between the signal from different PIN diodes after
the assumed background noise has been subtracted is shown in figure 7.8. Worth
noticing is the fact that the maximum in the signal is actually recorded by the
PIN diode at 141.6 m, which is located after the magnet where the beam is lost.

The first FLUKA run with the initial 2.5 mrad angle did not reproduce this
shape. Therefore, due to the uncertainty in angle, new FLUKA simulations were
performed, where the angle of incidence was gradually decreased. This changes
the ratio between the peak signals of the detectors outside the the first and the
second magnet. The results from the simulations for different angles and both
sides of the cryostat are shown in figure 7.9.

But even if the incident angle is decreased the shape does not correspond very
well to the experimental results. Several reasons are identified that may explain
this. First of all, as already mentioned, there is an uncertainty in the incident angle
and position of the beam. Small optical errors along the beam line can amplify
this effect. Furthermore, the relative calibration of the PIN diodes is not known.
So far it has been silently assumed that all PIN diodes have the same zero level.
This is however not necessarily true. The read out chain includes electronics that
need to be calibrated and tuned. Since the experiment was set up very quickly it
has not been possible to obtain this calibration information.

Yet another error source is that the signal from other losses could be superim-
posed on the signal from BFPP. Other loss mechanisms exist and the distribution
of the lost particles is not yet known. Also the fact that no magnetic field was
implemented in the empty section between the magnets could contribute to the
discrepancy, since the field could contribute through bending secondary charged
particles emerging out of the first beampipe towards the outside and the detector.

The conclusion is that the detailed correspondence so far between possible
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Figure 7.8. The profile of the signal in the PIN diodes versus z. The values are extracted
from figure 7.5 with the zero level subtracted. The diode at 144.6 m was not included
since the signal from this diode did not follow the luminosity, as can be seen in figure 7.5.

Figure 7.9. The energy deposition in the silicon detectors as a function of z for different
angles of incidence of the beam. The PIN diodes were placed on the side labelled ”right”,
towards the outside of the ring.
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simulations and the experimental data is relatively poor, but several causes for this
discrepancy have been identified. Because of these uncertainties, the simulation
of the RHIC dipole is not yet a good benchmarking test of the previous FLUKA
simulations. However, the most important conclusion is mentioned in Section 7.1.
Figure 7.5 shows that there is a clear correspondence between the luminosity and
the signal on the PIN diodes in a very localized position. Most likely this is the
first experimental evidence of BFPP in colliding beams and it means that BFPP
will take place also in the LHC. But it remains to understand more in detail the
discrepancies between the simulation and the experiment.



Chapter 8

Concluding remarks

As described in Chapter 1, the main task in this thesis was to investigate whether
the secondary ion beam caused by BFPP risks to quench the superconducting
magnets in the LHC. Another task was to determine if the present setup for the
BLM system, adapted for protons, is suitable also for ion operation. Finally a
simulation of the shower caused by the secondary BFPP copper beam at RHIC
was made and compared with experimental data.

The BFPP problem was much more complicated than it was initially believed,
since the knowledge of the actual quench limit for the LHC dipole turned out to
be limited. In [13] there is a given limit of 4.5 mW/cm3 for the power density
in the magnet. FLUKA simulations showed that the maximum power density
caused by BFPP is 7.2 mW/cm3 and therefore above the limit. But after a closer
investigation of its origins, it was concluded that the given limit is probably too
conservative. So although some uncertainties exist, both in the quench limit and
in the simulation result, it can be concluded that the magnet is not likely to
quench due to BFPP at design luminosity. A hypothetical consideration of the
first instants of time after the beam has been set into collision, with no heat
conduction and no convection, showed that the magnet can withstand the power
deposition from BFPP for several seconds. This means that when also the cooling
comes into play, it will take much more time before there is any danger. A quench
is not likely to occur but can not be excluded.

The FLUKA simulations of the BLM system showed that the ratio between
power density in the superconductors and expected signal on the BLMs is almost
identical for ions and protons. The simulations showed that the peak in power
deposition expected for ions, when they enter a material, occurs in the beam
screen and not in the coils. Thus the same BLM thresholds can be used, provided
that the ion and proton losses occur at the same places in the machine. The
present placement of the detectors is adjusted to the expected loss locations for
protons. Thus it is very important that further work be carried out in order to
calculate expected loss locations for ions.

The simulations of the secondary ion beam at RHIC did not agree in detail with
the experimental results. However, several possible error sources were identified,
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for instance in the angle of incidence between the beam and the beam pipe as well
as in the impact point. Also the signal caused by other sources is not known, as
well as the absolute calibration of the PIN diodes used in the experiment. More
work is still left to do on the analysis of the data from RHIC, and it is to be wished
that this will aid in getting better understanding of the discrepancies.
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Appendix A

Common acronyms

ALICE A Large Ion Collider Experiment
ATLAS A Toroidal LHC ApparatuS
BCS Bardeen, Cooper and Schrieffer
BFPP Bound Free Pair Production
BLM Beam Loss Monitor
BRAHMS Experiment at RHIC
CERN Conseil Européen pour la Récherche Nucléaire
CMS Compact Muon Solenoid
FLUKA FLUktuierende KAskade
IP Interaction Point
LEP Large Electron-Positron collider
LHC Large Hadron Collider
PDF Probability Density Function
PEMF Preprocessor for ElectroMagnetic FLUKA
PHENIX Experiment at RHIC
PHOBOS Experiment at RHIC
PS Proton Synchrotron
PSB Proton Synchrotron Booster
RHIC Relativistic Heavy Ion Collider
SLAC Stanford Linear ACcelerator
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