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Session 3

♦ Neutron interaction types
• Scattering 
• Absorption

♦ Differential scattering cross sections
♦ Scattering kinematics
♦ The transport and diffusion equations
♦ Data resources
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Neutron Interaction Types

♦ Scattering, σs
• Elastic, σe

• Inelastic, σin

♦ Absorption , σa
• Capture, σγ

• Fission, σf

• Neutron products, σn,2n ,…
• Charged-particle products, σn,p , σn,α ,…
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Another View

♦ Potential scatter (neutron scatters from the nuclear 
potential) – always elastic scattering

♦ Compound nucleus formation (tends to occur when 
neutron energy “matches” a nuclear energy state; thus 
resonance behavior)
• Elastic scattering, 
• Inelastic scattering,
• Particle emission,
• Fission 

♦ Interference scatter, in between potential and compound 
nucleus
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Neutron Scattering
♦ Elastic scattering (Q = 0)

• “Potential” scattering from the nuclear potential without 
entering the nucleus

• Compound-nucleus scattering in which the neutron 
enters the nucleus and is expelled with the nucleus still 
in the ground state

♦ Inelastic scattering (Q < 0)
• Compound-nucleus scattering in which the neutron 

enters the nucleus and is expelled with the nucleus in an 
excited state; neutron KE is given to the nucleus
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Neutron Capture

♦ Compound nucleus is formed and decays to 
ground state by emission of one or more gammas

♦ Significant in reactors because resonances create 
large cross sections for removal of neutrons

♦ For isolated resonances, Breit-Wigner formula 
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Isolated Capture Resonance
• Ec is neutron energy 

E0 is energy of the
resonance 

Γ is total line width 
or FWHM
Γγ is the radiative
line width

0 max
γ

σ σ Γ
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Neutron Cross Sections

♦ Macroscopic cross section 
• Σ = probability of interaction per unit path length
• Has units of cm-1

♦ Microscopic cross section
• probability of interaction per unit path length

per atom per unit volume
• Unit is cm2 or b, where 1 b = 10-24 cm2

N
σ Σ
= =
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Energy Dependence
♦ Elastic is fairly constant with energy (with exceptions for 

p-type interactions)
♦ Inelastic is fairly constant but has resonances close to 

nuclear excited states
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♦ Capture cross sections often 1/v at 
thermal and epithermal energies

♦ Some reactions occur only 
above a threshold energy
(see Fig. 2-18 in text)
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Hydrogen Cross Sections
Notes:  Elastic and total almost indistinguishable

Capture cross section behaves as 1/v
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Carbon Cross Sections

Note thresholds:  inelastic, (n,α), (n,p), (n,d)



IEEE Short Course 12

Iron-56 Cross Section
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Cadmium Cross Sections
Note:  elastic cross section is fairly constant with energy 
except for one broad resonance

Inelastic cross section 
exhibits a threshold at about 
250 keV

capture cross section is 
roughly 1/v at low energy 
and has many resonances 
from about 10 eV to 10 keV
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U-235 Cross Sections
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Scattering Cross Sections
♦ The microscopic scattering cross section can, in principle, 

be a function of position, energy, and direction 
♦ However, it is almost always true that there is no 

appreciable dependence on the incident neutron direction 
since nuclei are usually randomly oriented (there often is a 
dependence on the change in direction)

♦ Thus               is the scattering cross section at energy E
irrespective of neutron direction

♦ We rarely have to write                     or ( ),sσ r Ω

( ),s Eσ r

( ), ,s Eσ r Ω
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Doubly Differential Cross Section

♦ We interpret                                               
to be the probability per unit differential path length 
that a neutron of initial energy E and direction 
will scatter at r into a final energy within dE′ about 
E′ and a final direction within about      , 
normalized to one atom per cm3

♦ This is called the doubly differential scattering cross 
section

( ), ,s E E dE dσ ′ ′ ′ ′→ → Ωr Ω Ω

Ω

′Ωd ′Ω
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Differential Cross Sections

♦ The total scattering cross section is just

♦ Similarly, 

are the (singly) differential scattering cross sections
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Probability Density Function

♦ A function f(x) is a probability density function 
(PDF) if 
• It is defined on an interval [a,b]
• It is non-negative on the interval
• It is normalized such that

♦ f(x)dx = probability that a random sample from f
will be within dx about x

( ) 1
b

a
f x dx =∫
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Alternative Formulation
♦ We can express the singly differential cross sections

where                   and                    are PDFs
♦ This notation separates the cross section (with units 

of area) from the probability density 
♦ has units of MeV-1,        has units of sr-1

♦ Thus                                has units cm2 MeV-1 sr-1

( )Ef E E′→

( ) ( ) ( ), ,s s Er E E r E f E Eσ σ′ ′→ = →

( )fΩ ′→Ω Ω

fΩEf
( ), ,s r E Eσ ′ ′→ →Ω Ω

( ) ( ) ( ), , ,s sr E r E fσ σ Ω′ ′→ = →Ω Ω Ω Ω
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Rotational Invariance

♦ It is almost always true that
• Scattering and azimuthal angles are independent 
• The probability of scattering from one direction to 

another is dependent only on the cosine of the 
scattering angle

• where

( ) ( ) ( ) ( )1
2 sf f f fψ ωψ ω
π
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Simplification

♦ Because of rotational invariance, we often write

♦ Note θs is the scattering angle in the LAB system
♦ Neutron scattering is generally not isotropic in the 

LAB system but generally is isotropic in the COM 
system

( ) ( ) ( )1, , , ,
2s s sE E E f E Eσ σ ω
π

′ ′ ′→ → = →r Ω Ω r
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LAB and COM Systems



IEEE Short Course 23

Relationship between Systems

The velocities in the LAB and COM systems are related
through the velocity of the center of mass vCOM
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Elastic Scattering

♦ For elastic scattering, we can apply
• Conservation of energy
• Conservation of momentum

♦ Then it can be shown that 

♦ θs is scatter angle in LAB system, θc is scatter angle 
in COM system, and A is atomic mass of the nucleus

sintan 1 cos
c

s

cA

θθ
θ

=
+
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Elastic Scattering in COM System

♦ This can be rewritten as 

♦ Elastic scattering usually is isotropic in the COM 
frame; thus

and we use the relation above to obtain ωs
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Inelastic Scatter in COM Frame

♦ For inelastic scattering, 

where

with Q the Q-value of the interaction  

♦ Note                                 and the above reduces to 
the previous formula for elastic scattering   
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Scatter-angle/Energy Relationship

♦ There is a one-to-one relationship between 
scattering angle and energy loss

♦ A neutron that scatters through a small angle loses 
little energy compared to one that scatters through 
a large angle

♦ Let E be the energy before the scatter,       be 
the energy after the scatter, and define
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Elastic Scatter

♦ For elastic scattering, we find

♦ Also, for isotropic scatter in the COM frame (s-
wave scattering)

( )
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Alternative Formulation
♦ The doubly differential scattering cross section 

alternatively can be written

where

♦ The delta function sifts the appropriate value of
given the final energy

( ) ( ) ( ) ( )( )1, , ,
2s s sE E f E E S E Eσ σ δ ω
π

′ ′ ′ ′→ Ω →Ω = → −r r
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The Neutron Transport Equation

♦ Consider an arbitrary volume V bounded by 
surface S

♦ Assume the volume V does not change with time
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Further Assumptions
♦ Neutron decay can be ignored (~10 minute half life)
♦ The neutron can be treated as a point particle (thermal 

neutron wavelength is ~4.5×10-9 cm, small with 
respect to inter-atomic distances and very small 
respect to macroscopic distances)  

♦ Interactions with electrons are negligible 
♦ Neutron-neutron interactions can be ignored
♦ Neutron-nuclei interactions are point interactions 
♦ Can ignore effects of spin, magnetic moment, gravity
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NTE Derivation

♦ From the previous definition of neutron density

3[ ( , , , )
V

dEd n E t d r
t
∂

Ω Ω
∂ ∫ r ] = The time rate of change of 

the density of neutrons 
within volume V that have 
energies within dE about E
and direction within dΩ
about Ω at time t
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Gains and Losses

♦ This rate of change is related to the rate of gains 
and losses

♦ Replace n by 
♦ Since V is constant, we can interchange the order 

of differentiation and integration and obtain

3( , , , ) rate of gain in  - rate of loss in 
V

dEd E t d r V V
v t
Ω ∂

ϕ Ω =
∂∫ r

v
ϕ
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Gain Mechanisms

♦ Neutron sources within V that emit neutrons into 
dE about E and dΩ about Ω, 

♦ neutrons having energies within dE about E and 
directions within dΩ about Ω that stream into V
through S

♦ neutrons within V having energy E’ and direction 
Ω’ that scatter into energy within dE about E and 
direction within dΩ about Ω. 
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Loss Mechanisms

♦ neutrons having energies within dE about E and 
directions within dΩ about Ω that stream out of V
through S

♦ neutrons having energies within dE about E and 
directions within dΩ about Ω that interact within V
• absorption removes neutrons but scattering also removes 

them from the specific energy and direction intervals they 
occupied  
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Sources
♦ Define the source rate s such that

♦ Thus 

rate at which neutrons are 
introduced into d3r about r with 
energies within dE about E and 
moving in directions within dΩ
about Ω at time t

3( , , , )
V

s E t d rdEdΩ Ω =∫ r

3( , , , )s E t d rdEdΩ Ω =r

rate at which neutrons are 
introduced into V with 
energies within dE about E
and moving in directions 
within dΩ about Ω at time t
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Intermediate Result

♦ We have established

♦ Substitute appropriate forms and use Gauss’ 
theorem relating volume and surface integrals of 
vector quantities

3( , , , )
V

dEd E t d r
v t
Ω ∂

ϕ Ω
∂∫ r = (source rate + streaming-in rate

+ in-scatter rate – streaming-out 
rate - interaction rate) of neutrons 
within dΩ about      and dE about 
E in V at time t
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The Neutron Transport Equation

♦ Eventually, we obtain the integro-differential form of the 
neutron transport equation (NTE)   

♦ This can be expressed simply as 1/v times the time rate of 
change of ϕ = source rate + in-scattering rate 

- net leakage rate – removal rate
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Integral Form of the NTE

♦ A general case of the integtral form can be written 
( ) ( ) ( ) ( )
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where

and the two-dimensional delta function is defined such that
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Neutron Diffusion Equation

♦ Under the diffusion approximation (that the 
angular flux density can be expressed as a two-
term expansion in spherical harmonics) and a few 
other assumptions, the NTE can be reduced to the 
neutron diffusion equation 

where D is known as the diffusion coefficient 

( ) ( ) ( ) ( ) ( )0
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Neutron Cross Section Data

♦ It is very important to have detailed cross section 
data files, because of the resonances and 
thresholds in neutron cross sections

♦ A well-known data set is called the ENDF 
(Evaluated Nuclear Data File) cross section file 

♦ It is available at the National Nuclear Data Center 
at Brookhaven National Laboratory at 
http://www.nndc.bnl.gov/
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Alternative Neutron Data Files

♦ Another excellent 
evaluated neutron data 
file is available from the 
Japan Atomic Energy 
Research Institute

♦ It is called the JENDL 
file, which is available 
on the world wide web 
http://wwwndc.tokai-sc.jaea.go.jp/jendl/jendl.html
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Review of Transport Calculations

♦ Various forms of transport equations exist for the 
various types of radiation

♦ They cannot all be solved by the same techniques
♦ Thus, we have a suite of methods for calculating 

quantities such as detector response, dose, etc.
♦ Note that most quantities of interest depend on 

interaction rates and thus we often seek flux 
density or fluence
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General Approaches
♦ For photons and sometimes for neutrons, we can 

use approximate buildup and albedo schemes 
♦ These involve calculating the uncollided flux at a 

point or in a region (at a distance d from a point 
source in a uniform medium, the uncollided flux is 
simply

♦ Then the total flux can be estimated as  

( )(0)
0 24

ded S
d

ϕ
π

−Σ

=

( ) ( ) ( )(0)d B d dϕ ϕ=
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Numerical Schemes

♦ There are several numerical schemes for solving 
transport and diffusion equations, such as 
• Discrete ordinates (consider the flux at discrete 

positions, use a quadrature to estimate the in-scattering 
integral, and numerically solve a system of algebraic 
equations in terms of the finite unknown flux values

• Function expansion methods, such as Sn, which reduce 
to finding a finite number of expansion coefficients 

• Order-of-scatter approaches (find uncollided flux, then 
use as a source to find once-collided flux, etc.)
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Monte Carlo Methods

♦ Since flux densities can be considered to be 
expected values, we can use Monte Carlo 
simulation techniques 

♦ Monte Carlo is based on the law of large numbers 
(Bernoulli, 1713, in Ars Conjectandi or “The Art 
of Conjecturing”) and the central limit theorem

♦ The power of MC is that the standard deviation in 
the estimate varies at worst as 1/N1/2
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What is Monte Carlo?

♦ MC is a powerful form of quadrature
• Estimates expected value integrals
• Applies to problems of arbitrary dimensionality
• Highly flexible and adaptable

♦ MC is also a means of simulation
• Conduct numerical “experiments” to estimate outcomes 

of complex processes
• Experiments run on a computer, dart board, etc.  
• Highly intuitive 



IEEE Short Course 48

Law of Large Numbers

♦ It can be shown that, almost surely, 

i.e., the sample mean eventually approaches the 
population mean

♦ The central limit theorem can be used to estimate  
how large must N be to achieve a desired precision

( )
1

1lim
N b

i aN i
x x xf x dx x

N→∞
=

= = =∑ ∫
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Some General-Purpose MC Codes

♦ MCNP (comes in various flavors) – coupled 
neutron, photon, electron transport
• http://www-rsicc.ornl.gov/

♦ EGSnrc or EGS4 – coupled photon, electron 
transport
• http://www.irs.inms.nrc.ca/EGSnrc.html

♦ GEANT – object-oriented code for treating 
various radiation types over broad energy ranges
• http://geant4.web.cern.ch/geant4/
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Other General-purpose MC Codes

♦ PENELOPE – coupled photon, electron transport
• http://www.nea.fr/html/dbprog/peneloperef.html

♦ MCSHAPE – photon transport accounting for 
polarization
• http://shape.ing.unibo.it/

♦ SRIM – the Stopping and Range of Ions in matter; 
performs heavy charged particle transport and 
contains extensive stopping power data
• http://www.srim.org/
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