LHC BLM threshold modification reports

Contributions to DIPAC 2009 related to Beam Loss Monitoring


TUPB31 Configuration and Validation of the LHC Beam Loss Monitoring System

    The LHC Beam Loss Monitoring (BLM) system is one of the most complex instrumentation systems deployed in the LHC. As well as protecting the machine, the system is also used as a means of diagnosing machine faults, and providing feedback of losses to the control room and several systems such as the Collimation, the Beam Dump and the Post-Mortem. The system has to transmit and process signals from over 4'000 monitors, and has approaching 3 million configurable parameters. This paper describes the types of configuration data needed, the means used to store and deploy all the parameters in such a distributed system and how operators are able to alter the operating parameters of the system, particularly with regard to the loss threshold values. The various security mechanisms put in place, both at the hardware and software level, to avoid accidental or malicious modification of these BLM parameters are also shown for each case.

            paper: [pdf], poster: [pdf, pptx]

TUPB32 Design Specifications for a Radiation Tolerant Beam Loss Measurement ASIC   

    A novel radiation hardened current digitizer ASIC is in planning stage, aimed at the acquisition of the current signal from the ionization chambers employed in the Beam Loss Monitoring system in CERN accelerator chain. The purpose is to match and exceed the performances of the existing discrete component design, currently in operation in the Large Hadron Collider (LHC). The specifications include: a dynamic range of nine decades, defaulting to the 1pA-1mA range but adjustable by the user, ability to withstand a total integrated dose of at least 10 kGray in 20 years of operation and user selectable integrating windows, as low as 500ns. Moreover, the integrated circuit can be employed to digitize currents of both polarity with a minimum number of external components and without needing any configuration. The target technology is IBM 130 nm CMOS process. The specifications, the architecture choices and the reasons on which they're based upon are discussed in the paper.

            paper: [pdf], poster: [pdf]

TUPB33 Systematic Study of Acquisition Electronics with a High Dynamic Range for a Beam Loss Measurement System 

    A discrete components design of a current digitizer based on the current-to-frequency converter (CFC) principle is currently under development at CERN. The design targets at rather high input current compared to similar designs, with a maximum equal to 200mA and a minimum of 1nA, as required by the ionization chamber that will be employed in the Proton Synchrotron and Booster accelerators as well as in the LINAC. It allows the acquisition of currents of both polarities without requiring any configuration and provides fractional counts through an ADC to increase the resolution. Several architectural choices are being considered for the front-end circuit, including charge balance integrators, dual-integrator input stages, integrators with switchable-capacitor, in both synchronous and asynchronous versions. The signal is processed by an FPGA and transmitted over a VME64x bus. Design, simulations and measurements are discussed in this article.

            paper: [pdf], poster: [pdf]

TUPD26 LHC BLM Single Channel Connectivity Test using the Standard Installation

    For the LHC beam loss measurement system the high voltage supply of the ionisation chambers and the secondary emission detectors is used to test their connectivity. A harmonic modulation of 0.03 Hz results in a current signal of about 100 pA measured by the beam loss acquisition electronics. The signal is analyzed and the measured amplitude and phase are compared with individual channel limits for the 4000 channels. It is foreseen to execute an automatic procedure for all channels every 12 hours which takes about 20 minutes. The paper will present the design of the system, the circuit simulations, measurements of systematic dependencies of different channels and the reproducibility of the amplitude and phase measurements.

            paper: [pdf], poster: [pdf, ppt]

Return to Main Page

 

Number of hits: .
Send your comments and suggestions concerning this page to Christos Zamantzas